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ABSTRACT
We consider two new approaches to nonparametric estimation of the leverage effect. The first approach
uses stock prices alone. The second approach uses the data on stock prices as well as a certain volatility
instrument, such as the Chicago Board Options Exchange (CBOE) volatility index (VIX) or the Black–Scholes
implied volatility. The theoretical justification for the instrument-based estimator relies on a certain invari-
ance property, which can be exploited when high-frequency data are available. The price-only estimator is
more robust since it is valid under weaker assumptions. However, in the presence of a valid volatility instru-
ment, the price-only estimator is inefficient as the instrument-based estimator has a faster rate of conver-
gence.We consider an empirical application, inwhichwe study the relationship between the leverage effect
and the debt-to-equity ratio, credit risk, and illiquidity. Supplementarymaterials for this article are available
online.

1. Introduction

One of the most important empirical stylized facts about the
volatility is the leverage effect, which refers to the generally
negative correlation between an asset return and its volatility
changes. The term “leverage” dates back to an early influential
economic hypothesis of Black (1976) that explains this correla-
tion using the debt-to-equity ratio, a common financial lever-
age measure. The estimation of the leverage effect is challenging
because volatility is not observable.

We develop two qualitatively different approaches to non-
parametric estimation of the leverage effect using high-
frequency data. We also study the empirical relationship
between the leverage effect and the debt-to-equity ratio. Our
results extend the large body of research that has used high-
frequency data fruitfully to estimate volatility measures of asset
returns, see, for example, Andersen et al. (2003). These meth-
ods are now commonly used in economics and finance, see, for
example, Patton and Verardo (2012), Bandi and Renò (2015),
Bollerslev, Li, and Todorov (2016), and Segal, Shaliastovich, and
Yaron (2015).

Our first approach to the leverage effect estimation only uses
observations on the asset prices. It is an analog of the low-
frequency approach that has been common since Black (1976):
one first conducts preliminary estimation of the volatility over
small windows, and then computes the correlation between
returns and the increments of the estimated volatility. However,
in general there is an errors-in-variables bias associated with the
preliminary estimation of volatility. We propose an estimator
that corrects the biases due to the preestimation of volatility, and
is valid for a very general class of semimartingales. We call this
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estimator the Price-only Realized Leverage (PRL). The rate of
convergence of the PRL estimator is n1/4.

Our second approach is to replace the preliminary estima-
tion of volatility with high-frequency observations of certain
financial derivatives. It is well known that financial deriva-
tives contain useful information about volatility. However, the
implied volatilities from these derivatives are at best a proxy
for the actual volatility as they are contaminated by risk pre-
mia. To purge the impact of risk premia, additional assump-
tions are necessary to model this contamination, which link
the risk-neutral dynamics with the objective dynamics. For
this purpose, we provide one such condition, that is, Assump-
tion 2, which allows the estimation of the leverage effect
using high-frequency data on certain volatility instruments,
such as the Chicago Board Options Exchange (CBOE) volatil-
ity index (VIX) or Black–Scholes implied volatility. (Since
September 22, 2003, the VIX has been constructed by the
CBOE using a weighted portfolio of options: (VIXt/100)2 =
2ert,τ τ

τ
(
∫ e ft,τ
0

P(τ,x)
x2 dx + ∫ ∞

e ft,τ
C(τ,x)
x2 dx), where P(τ, x) andC(τ, x)

are put and call optionswith time-to-maturity τ and strike x, and
ft,τ is the log price of forward contracts, see, for example, Carr
and Wu 2009.) We call the resulting estimator the instrument-
based realized leverage (IRL). We develop the asymptotic the-
ory for this estimator, and show that it has a faster (n1/2) rate of
convergence, which in practice allows estimation of the leverage
effect on relatively short windows such as 1 month or one quar-
ter. Estimation of the leverage effect at such short time periods
is important as it allows linking the time series of the estimated
leverage effect with the time series of economic and financial
variables.
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The two estimators we develop are complementary to each
other and have their own advantages and disadvantages. The
IRL is more efficient in the sense that is has a faster rate of
convergence, but it requires (i) the availability of the data on
a volatility instrument, and (ii) that Assumption 2 adequately
describes the data at hand. In Section 4.1, we argue that this
assumption holds in a reasonably broad class of models. We
stress that in particular it holds for various popular paramet-
ric models used in the derivative pricing literature. We provide
a simple high-frequency Durbin–Wu–Hausman test that allows
one to evaluate the validity of Assumption 2, see Durbin (1954),
Wu (1973), andHausman (1978).We also discuss settings where
this assumption does not hold, and illustrate the impact of that
on the IRL. The advantage of the PRL is that it does not rely on
the availability of the additional data or Assumption 2. The cost
of this robustness is a substantially lower precision. The preci-
sion can of course be increased by using longer time intervals,
and we find that the PRL becomes practical if used over time
periods of multiple years of data. (The finding that the price-
only estimator requires multiple years of data for precise esti-
mation appears to be in line with earlier empirical analysis by
Aït-Sahalia, Fan, and Li (2013) who use four years of 1 min data
on the S&P 500 futures.) Over 11 years, the standard error for
the leverage effect of the S&P 500 is 0.073.

We illustrate the finite sample performance of the estima-
tors in Monte Carlo simulations and an empirical application.
In the Monte Carlo section, we consider the estimation of the
leverage effect in models where Assumption 2 holds, and in a
model where this assumption fails. Higher precision of the IRL
makes it possible to investigate how the leverage effect changes
over time, which is important for financial applications.We pro-
vide a time series of monthly leverage effects of the S&P 500
index using the VIX as a volatility instrument. (We also use the
Black–Scholes implied volatility constructed from intraday S&P
500 options in an earlier draft. The two time series of estimates
share a similar pattern.) We also conduct a time series regres-
sion with the estimated leverage effect and important financial
indicators, such as the credit risk, illiquidity, and the debt-to-
equity ratio. Overall, we find that the leverage effect of the S&P
500 index tends to be stronger in bad times. This finding is con-
sistent with, for example, Bandi and Renò (2012) who docu-
mented that the leverage effect of the S&P 500 is stronger when
volatility is higher. Our empirical findings support the leverage
hypothesis of Black (1976), while also suggesting that the debt-
to-equity ratio is likely not the only determinant of the financial
leverage.

For more than two decades, parametric models have been
used to capture the leverage effect of daily stock returns. For
example, the popular exponential generalized autoregressive
conditional heteroscedasticity (EGARCH) model of Nelson
(1991) is motivated by the inability of the standard GARCH
models to capture the leverage effect. Many articles have also
estimated the leverage effect in parametric stochastic volatil-
ity models. Such models assume a constant leverage effect, and
their estimation involves either the Markov chain Monte Carlo
algorithm or particle filters, see, for example, Jacquier, Polson,
and Rossi (2004), Yu (2005), Pitt, Malik, and Doucet (2014),
and Eraker (2004), or moment- or likelihood-based approaches,
see, for example, Harvey and Shephard (1994), Pan (2002),
and Aït-Sahalia and Kimmel (2007). These parametric leverage

effect estimates depend on the specified volatility dynamics. In
contrast, our framework is more agnostic about the dynamics of
the volatility.

The use of the derivative information to estimate the lever-
age effect has been previously considered by a few articles.
Most closely related article is an empirical study by Andersen,
Bondarenko, and Gonzalez-Perez (2015a). Although authors
mainly focus on developing an alternative volatility proxy “Cor-
ridor VIX,” they also use the IRL estimator in the empirical
study. Bollerslev, Sizova, and Tauchen (2012) calculated the
leverage effect as a correlation between returns and changes of
the VIX. Their estimates using the VIX are substantially more
stable than the estimates using absolute returns as a volatil-
ity proxy in Bollerslev, Litvinova, and Tauchen (2006). Among
the articles that propose fully parametric estimators, Aït-Sahalia
andKimmel (2007) also used theVIX, whereas Bakshi, Cao, and
Chen (1997), Pan (2002), Eraker (2004), and Broadie, Chernov,
and Johannes (2007) used S&P 500 options.

Several articles are related to the PRL estimator. Aït-Sahalia,
Fan, and Li (2013) noted that empirically the correlation
between returns and changes of the estimated volatility from
high-frequency data is close to zero. They called this phe-
nomenon “the leverage effect puzzle.” In the parametric frame-
work of the Heston model, they showed that naive correlation
estimator is biased. Wang and Mykland (2014), Vetter (2015),
and Vetter (2012) provided estimators for the integrated covari-
ation between the returns and their volatilities as well as for the
integrated volatility of volatility. A correlation-type combination
of their estimators provides a nonparametric equivalent to the
bias-corrected estimator of Aït-Sahalia, Fan, and Li (2013), and
converges to a certain volatility-weighted leverage effect mea-
sure. (In an earlier draft, we have provided the joint central limit
theorem results for these components in a more general set-
ting with jumps, and developed the asymptotic distribution of
the estimator of this volatility-weighted leverage effect measure,
VWIL (see Equation (5)).) However, empirically this estimator
produces insignificant estimates of the leverage effect with 11
years of 5 min S&P 500 returns. In contrast, our PRL gives sig-
nificant estimates in the same setting. This increase in precision
of the PRL estimator is not surprising because it is constructed
similarly to the efficient quarticity estimator in Jacod andRosen-
baum (2013), by aggregating a sequence of local estimates. To
derive the asymptotic distribution of the PRL, we prove a gen-
eral central limit theorem that significantly extends the results by
Jacod and Rosenbaum (2013) and Aït-Sahalia and Jacod (2014).
This theoretical result is of own interest. Bandi and Renò (2012),
Bandi and Renò (2015), and Aït-Sahalia et al. (2015) estimated
related quantities, which are however different from the inte-
grated leverage effect.

Both PRL and IRL are related to the literature on statis-
tical inference based on preliminary estimation of spot vari-
ances and covariances. This literature dates back to Comte and
Renault (1998) and Kristensen (2010), with Jacod and Rosen-
baum (2013) being a more recent contribution. The error from
this preliminary estimation is asymptotically negligible if the
time span diverges sufficiently fast, see, for example, Bandi and
Renò (2011) and Li and Patton (2015). Our asymptotic approxi-
mation does not use a diverging time span and therefore requires
taking into account the bias due to the preliminary estimation of
variances and covariances. Empirically, we find that the effect of
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the bias correction for the PRL is sizeable even when the time
span is 11 years.

The rest of the article is organized as follows. Section 2
describes the model and the quantities of interest. Section 3
presents the PRL estimator and the associated asymptotic the-
ory. Section 4 presents the IRL estimator and its asymptotic
properties. Section 5 presents a Durbin–Wu–Hausman specifi-
cation test. Section 6 providesMonteCarlo evidence and Section
7 presents empirical findings. Section 8 concludes. The online
appendices contain the proofs.

2. Leverage Effect in Continuous Time

We work in a general nonparametric framework that allows for
potential jumps in prices and volatility. This framework is com-
monly used in high-frequency econometrics, see, for example,
Aït-Sahalia and Jacod (2014).

Assumption 1. Suppose that X , the logarithm of the underlying
asset price, follows an Itô semimartingale,

Xt = X0 +
∫ t

0
bsds +

∫ t

0
σsdWs

+
∫ t

0

∫
E

δ(s, z)μ(ds, dz), (1)

and its spot variance, denoted by ct = σ 2
t , follows:

ct = c0 +
∫ t

0
b̃sds +

∫ t

0
σ̃sdW̃s

+
∫ t

0

∫
E

δ̃(s, z)μ(ds, dz), (2)

where μ(ds, dz) is a Poisson random measure on R+ × E.
E is an arbitrary Polish space with a σ -finite and infi-
nite measure λ having no atoms, with an intensity mea-
sure ν(ds, dz) = ds ⊗ λ(dz). W and W̃ are standard
Brownian motions. The correlation between Ws and W̃s
is ρs. Moreover, |δ (ω, t ∧ τm (ω) , z) | ∧ 1 ≤ 	m (z) and
|δ̃ (ω, t ∧ τm (ω) , z) | ∧ 1 ≤ 	m (z), for all (ω, t, z), where
(τm) is a localizing sequence of stopping times and, for some
r ∈ [0, 1], the function	m onE satisfies

∫
E

	m (z)r λ (dz) < ∞,
that is, the jumps are summable. In addition, bs and b̃s are locally
bounded, and c(c)s = σ̃ 2

s is càdlàg and locally bounded. For any
s ∈ [0, t], cs, cs−, c(c)s , and c(c)s− are almost surely positive. Also,
[X,X]cs �= 0 and [c, c]cs �= 0 hold almost surely, for each s. (The
superscript c denotes the continuous part of the process, and
[X,X]s is the quadratic variation of X over [0, s].) Finally, we
assume that ρs is càdlàg, and that |ρs| and |ρs−| are almost surely
smaller than 1.

What is an appropriate measure of the leverage effect in this
general framework? To motivate, note that in the special case of
the popular Heston model, the leverage effect is usually associ-
ated with a parameter ρ, which equals

ρ = lim

→0

Corr (cs+
 − cs,Xs+
 − Xs) , ∀s ∈ [0, t]. (3)

It also coincides with the correlation between the two Brownian
motions of the Heston model, which is assumed constant over
time. In general, this correlation ρs varies over time. We hence
call it the spot leverage effect. Then, a natural measure of the

leverage effect over the interval [0, t] is a scaled integral of the
spot leverage over time, namely, the integrated leverage effect,

ILt = 1
t

∫ t

0
ρsds. (4)

Moreover, we can represent ρs alternatively as

ρs ≡ [X, c]c,′s√
[X,X]c,′s

√
[c, c]c,′s

,

where ′ denotes a derivative with respect to time.
Our IL measure is invariant to nonlinear transformations. In

otherwords, for any smooth andmonotone increasing functions
f and g with nonvanishing derivatives, by Itô’s lemma, we have

[X, c]c,′s√
[X,X]c,′s

√
[c, c]c,′s

= [ f (X ), g(c)]c,′s√
[ f (X ), f (X )]c,′s

√
[g(c), g(c)]c,′s

.

As a result, we have∫ t

0

[X, c]c,′s√
[X,X]c,′s

√
[c, c]c,′s

ds

=
∫ t

0

[ f (X ), g(c)]c,′s√
[ f (X ), f (X )]c,′s

√
[g(c), g(c)]c,′s

ds.

An important consequence is that variance-based leverage effect
coincides with volatility-based leverage effect.

An alternative leverage effect measure can be defined as the
scaled continuous part of the quadratic covariation between c
and X ,

VWILt = [c,X]ct√
[X,X]ct

√
[c, c]ct

=
∫ t
0 ρsσsσ̃sds√∫ t

0 σ 2
s ds

√∫ t
0 σ̃ 2

s ds
. (5)

This leverage effect measure depends also on the path of the
spot volatility and the volatility of volatility, hence we name it
the volatility-weighted integrated leverage effect (VWIL). This
measure is only invariant to linear transformations.

While we do allow for general price and volatility jumps,
they do not contribute to our definition of leverage. We choose
not to include them for the following reasons. First, the IL is
based on the spot correlation, which is an intuitive generaliza-
tion of the ρ parameter in the Hestonmodel, and which endows
the IL measure with invariance to smooth transformations.
However, the spot correlation is not well defined without the
exclusion of jumps. (Only the continuous part of the quadratic
variation is absolutely continuous and differentiable almost
everywhere.) Second, Andersen, Bondarenko, and Gonzalez-
Perez (2015a) pointed out that the VIX contains artificial jumps
due to its implementation by the CBOE. The IRL using the VIX
is robust to the artificial jumps, because it only depends on the
continuous part. Third, we find in our empirical study that trun-
cating off the jump component makes the estimates more sta-
ble. Finally, Bollerslev et al. (2009) found that the leverage effect
works primarily through the continuous components. We point
out that the use of ourmethod does not require taking a stand on
the importance of jumps, and can be viewed as the estimation of
the continuous part of the total leverage effect. (This interpre-
tation is analogous to the estimation of the continuous part of
beta in, for example, Reiß, Todorov, and Tauchen (2015) and
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Aït-Sahalia, Kalnina, and Xiu (2014), and the principal com-
ponent analysis of the continuous spot covariance matrix in
Aït-Sahalia and Xiu (2014).)

3. Estimation using Price Observations Alone

The current section introduces the Price-only Realized Leverage
(PRL), a nonparametric leverage effect estimator that uses price
observations alone, and presents its asymptotic distribution. The
PRL estimator uses preliminary estimation of volatility, and it is
based on an aggregation of spot correlations between the returns
and the estimated volatility increments.

To obtain preliminary estimates of spot volatility, we use
an additional set of smaller and overlapping blocks, each con-
taining ln observations, within each larger nonoverlapping
block of size kn. We estimate the unobservable spot vari-
ance with the truncated realized variance over each smaller
block,

σ̂ 2
i = 1

ln
n

ln−1∑
j=0

(

n

i+ jX
)2

1{∣∣∣
n
i+ jX

∣∣∣≤un
},

with the threshold un satisfying conditions of Theorem 1. The
use of overlapping blocks of size ln is motivated by the fact
that the nonoverlapping alternative would be less efficient in the
sense of having a larger asymptotic variance, as shown by Aït-
Sahalia and Jacod (2014) for the estimation of the VWIL.Mean-
while, the use of overlapping blocks of size kn would not improve
the efficiency of the PRL, similar in spirit to the estimator of
Jacod and Rosenbaum (2013).

To simplify the exposition, we denote

Cs =
(

cs c(X,c)
s

c(X,c)
s c(c)s

)
≡

(
[X,X]c,′s [X, σ 2]c,′s
[X, σ 2]c,′s [σ 2, σ 2]c,′s

)
, (6)

and notice that it implies c(X, c)
s = ρsc1/2s (c(c)s )1/2. We can

approximate each element of this matrix at s = ikn
n as follows
(we use ĉ to denote the estimator of σ 2 based on a block of size
kn, and use σ̂ 2 when a block of size ln is used):

ĉikn+1 = 1
kn
n

kn−1∑
j=0

(

n

ikn+1+ jX
)2

1{∣∣∣
n
ikn+1+ jX

∣∣∣≤un
},

ĉ(X, c)
ikn+1 = 1

lnkn
n

kn−1∑
j=0

⎧⎨⎩(σ̂ 2
ikn+1+ j+ln − σ̂ 2

ikn+1+ j)

×
2ln−1∑
l=0

(
n
ikn+1+ j+lX )1{∣∣∣
n

ikn+1+ j+lX
∣∣∣≤un

}
}

,

ĉ(c)ikn+1 = 3
2lnkn
n

kn−1∑
j=0

{
(σ̂ 2

ikn+1+ j+ln − σ̂ 2
ikn+1+ j)

2

− 4
ln

(
σ̂ 2
ikn+1+ j

)2
}

,

therefore the estimator of the spot leverage effect is

ρ̂ikn+1 = ĉ(X, c)
ikn+1(

ĉikn+1
)1/2 (ĉ(c)ikn+1

)1/2 .

Our PRL can be constructed as follows:

PRLt = kn
n

t

Nn
t∑

i=0

⎛⎜⎝ρ̂ikn+1 − 1
2kn

√

n

⎛⎜⎝− 5
β

ĉ3/2ikn+1ĉ
(X, c)
ikn+1(

ĉ(c)ikn+1

)3/2

−151β
120

ĉ(X, c)
ikn+1

ĉ1/2ikn+1

(
ĉ(c)ikn+1

)1/2 + 36
β

ĉ(X, c)
ikn+1 ĉ

7/2
ikn+1(

ĉ(c)ikn+1

)3/2

+ 9
β

ĉ(X, c)
ikn+1 ĉ

3/2
ikn+1(

ĉ(c)ikn+1

)1/2 + 453β
280

ĉ(X, c)
ikn+1 (ĉ(c)ikn+1)

1/2

ĉ1/2ikn+1

⎞⎟⎠
⎞⎟⎠ ,

(7)

where Nn
t = [(t/
n − 2ln + 2)/kn] − 1 and β = ln

√

n. The

component after ρ̂ikn+1 corrects an asymptotic bias. The next
theorem presents the asymptotic distribution of the PRL
estimator.
Theorem 1. Suppose Assumption 1 holds. In addition, σt is a
continuous Itô semimartingale. Suppose β = ln

√

n ∈ (0,∞),

k3n
2
n → ∞, and k4n
3

n → 0. Moreover, suppose un 
 
�
n with

0 ≤ r < 1/3 and 5/(12 − 6r) ≤ � < 1/2. Then,


−1/4
n (PRLt − ILt)

L−s→ Z
√
VPRL
t ,

where Z is a standard normal random variable defined on the
extension of the original probability space, and the variance
V PRL
t is given by

V PRL
t = 1

t2

∫ t

0

(
23β
15

+ 8
3β

c2s
c(c)s

− 2
β

cs(c(X, c)
s )2

(c(c)s )2

+ 12
β3

c3s (c
(X, c)
s )2

(c(c)s )3
+ β

21
(c(X, c)

s )2

csc(c)s

)
ds.

Similarly, we can construct a consistent estimator of V PRL
t

using local estimators of cikn+1, c(X, c)
ikn+1 , and c(c)ikn+1 as follows:

V̂ PRL
t = kn
n

t2

Nn
t∑

i=0

⎛⎜⎝23β
15

+ 8
3β

ĉ2ikn+1
ĉ(c)ikn+1

− 2
β

ĉikn+1
(
ĉ(X, c)
ikn+1

)2

(
ĉ(c)ikn+1

)2

+ 12
β3

ĉ3ikn+1
(
ĉ(X, c)
ikn+1

)2

(
ĉ(c)ikn+1

)3 + β

21

(
ĉ(X, c)
ikn+1

)2

ĉikn+1ĉ
(c)
ikn+1

⎞⎟⎠. (8)

Appendix A contains the proof of Theorem 1. Note that due
to the preliminary estimation of volatility, the rate of conver-
gence of the PRL estimator is slower than the usual

√
n rate of

convergence.
To prove Theorem 1, we first prove a more general result

about estimating
∫ t
0 g(Cs)ds for any smooth function g(·); see

Theorem A1 in Appendix A. This theorem extends Jacod and
Rosenbaum (2013) who estimated

∫ t
0 g(cs)ds. The spot matrix

Cs in (6) not only contains the spot volatility cs of the observ-
able process X , but also volatilities of unobservable processes.
Therefore, estimating integrals of functionals ofCs requires sub-
stantially more involved methods and first-order bias correc-
tions. Theorem 1 is related toWang andMykland (2014), Vetter
(2015), and chap. 8 of Aït-Sahalia and Jacod (2014), in that our
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ĉ(X, c)
ikn+1 and ĉ

(c)
ikn+1, for each block [(ikn + 1)
n, (i + 1)kn
n], are

similar to their estimators on [0, t].
The above theoremassumes that there are no volatility jumps.

Volatility jumps do not affect the estimation of the covariation
between the continuous components of returns and volatilities,
c(X, c)
ikn+1 , because these jumps do not co-vary with the continuous
component of returns, see, for example, Aït-Sahalia et al. (2015).
However, volatility jumps affect the estimation of c(c)ikn+1, because
its estimator would converge to the total quadratic variation of
the volatility process. To ensure a fair comparison between the
IRL and PRL estimates in the empirical work, we suggest iden-
tifying volatility jumps using the jumps of the VIX, a strategy
previously adopted by Todorov and Tauchen (2011) for the esti-
mation of the volatility jump activity index. We thus modify the
above ĉ(c)ikn+1 as follows:

c̃(c)ikn+1 = 3
2lnkn
n

kn−1∑
j=0

{
(σ̂ 2

ikn+1+ j+ln − σ̂ 2
ikn+1+ j)

2

− 4
ln

(
σ̂ 2
ikn+1+ j

)2
}
1{|Zikn+1+ j+ln−Zikn+1+ j|≤vn},

where Z is the VIX and vn 
 (ln
n)
� . In the empirical applica-

tion, we find c̃(c) and ĉ(c) to be very close. (Unlike price jumps,
volatility jumps are much more complicated to deal with. Prov-
ing the asymptotic properties of this estimator may be possi-
ble by combining our results with a method used by Jacod and
Rosenbaum (2015), which would complicate the proof even fur-
ther.) We also recommend a small-sample adjustment, which
is to divide the above sum by the number of nonzero sum-
mands instead of kn. It is not needed given the sample size in our
empirical study.

4. Estimation with a Volatility Instrument

4.1. Volatility Instrument

Financial derivatives are known to contain valuable informa-
tion about the volatility. However, to make use of this informa-
tion, certain assumptions that link the volatility dynamics under
the risk-neutral measureQ to the dynamics under the objective
measureP are necessary. In this section, we assume that we have
access to what we call a volatility instrument.

Assumption 2. There exists an observable variable Zt , which is
a monotone increasing and twice differentiable function of ct
and a smooth function of t , that is, Zt = f (t, ct ). In addition,
[Z,Z]cs is almost surely not vanishing and f ′(s, x) > 0, for all
0 ≤ s ≤ t and x > 0. (We use f ′ here to denote the derivative of
f with respect to the second argument.) We call such a variable
a volatility instrument.

Assumption 2 implies that the spot leverage effect betweenXt
and ct equals the spot leverage effect between Xt and Zt ,

ρs = [X, c]c,′s√
[X,X]c,′s

√
[c, c]c,′s

= [X,Z]c,′s√
[X,X]c,′s

√
[Z,Z]c,′s

.

The last equality is true by Itô’s lemma for general Itô semi-
martingales, see, for example, Proposition 8.19 of Cont and
Tankov (2004). This implies that the IL measure is invariant

with respect to the functional transformation f . If the researcher
has access to high-frequency data on a volatility instrument,
this property can be used to eliminate the effect of risk premia
embedded in the function f , and hence to estimate IL.

Remark. A weaker assumption is sufficient for all of the results
in this article. If we decompose the stochastic process Zt into
its continuous and jump components, we only require Zc

t =
f̃ (t, ct ), where Zc

t is the continuous component of Zt . This
means we need no assumptions on the jump part of the volatility
instrument other than somemild conditions on its activity as in
Assumption 1. For ease of presentation and interpretation, we
adopt the current Assumption 2.

Assumption 2 imposes restrictions on the volatility dynamics
under the risk-neutral measure Q and is therefore a high-level
assumption. It holds for a number of models in the derivative
pricing literature.We summarize two classes of such risk-neutral
models for the spot variance, of which the implied variance, Zt ,
defined as the squared VIX up to some scalar, is a monotone
increasing and differentiable function. (For both classes ofmod-
els, the dynamics of the logarithm of the index Xt , under the
risk-neutral measureQ, is assumed to follow

Xt = X0 +
∫ t

0
bQs ds +

∫ t

0
σsdWQ

s

+
∫ t

0

∫
R

z (N(ds, dz) − ν(Vs, dz)ds),

where the drift bQs is determined by the no-arbitrage condition
and is irrelevant for the pricing of the VIX,WQ is aQ-Brownian
motion, and N(ds, dz) is the jump measure of Xt with com-
pensator ν(Vs, dz)ds that may depend on the spot variance. We
assume there exist constants η0 and η1, such that for all v > 0,∫
R
z2ν(v, dz) = η0 + η1v .) The first class ofmodels, henceforth

Type I models, has the following risk-neutral dynamics:

Type I model: σ 2
t = σ 2

0 +
∫ t

0
κ(ξ̄ 2 − σ 2

s )ds + MQ
t ,

where MQ is a martingale under the Q-measure and κ , ξ̄ are
model parameters. Type I models include those studied by Bak-
shi, Cao, and Chen (1997), Bates (2000), Pan (2002), Eraker
(2004), Eraker, Johannes, and Polson (2003), Broadie, Chernov,
and Johannes (2007), and Bates (2012), among others, where
jumps may be driven by the compound Poisson process with
time-varying intensity or the CGMY process (Carr et al. 2003).
Type I models also include non-Gaussian Ornstein–Uhlenbeck
(OU) processes considered by Barndorff-Nielsen and Shephard
(2001); see also Shephard (2005) for a collection of similar mod-
els. For Type I models, we can show that Zt = a + bσ 2

t , where
a and b depend on parameters that appear in the risk-neutral
dynamics.

Second, Type II models impose an exponential-affine struc-
ture for theQ-dynamics of σ 2

t :

Type II model: log σ 2
t = α + βFt , Ft = F0 −

∫ t

0
κFsds + LQt ,
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where LQt is a finite variational Lévy martingale with diffusive
coefficient σ and Lévy measure ν̃, and α, β , κ are model param-
eters. This model dates back to Nelson (1990), who introduces
it as a continuous-time limit of the discrete EGARCH model.
Andersen, Bollerslev, and Meddahi (2005) and Chernov et al.
(2003) had employed this model in their empirical work. One
can show that Type II models imply the following pricing for-
mula for the implied variance,

Zt = η0 + 1
τ

∫ τ

0
(η1 + 1)

× exp
(
α + e−κu(log σ 2

t − α) +C(u)
)
du,

where τ = 21 trading days is the horizon of the VIX, C(u) =∫ u
0 ϕ(βe−κv )dv , ϕ(u) = σ 2u2/2 + ∫

R
(euz − 1 − uz)ν̃(dz), and

η0 and η1 are constants defined in the remark for Assumption
2. It can be easily verified that Zt is an increasing differentiable
function ofσ 2

t . In fact,Zt ≈ a + bσ 2d
t , where a, b, and d are some

constants that depend on the parameters in the risk-neutral
dynamics.

Assumption 2 effectively says that to use theVIX as an instru-
ment, the VIX should only be driven by the unobserved volatil-
ity. Notice that this does not necessarily imply that the objective
volatility process can only be driven by one factor. However, it
does rule out a few models in the recent empirical finance liter-
ature, see, for example, Mencia and Sentana (2013), Christof-
fersen, Heston, and Jacobs (2009), and Andersen, Fusari, and
Todorov (2015b). For example, a common two-factor volatility
process under the risk-neutral measureQ is

dσ 2
t = (

η + κξ 2
t − κQσ 2

t
)
dt + γ σtdW̃Q

t ,

dξ 2
t =

(
κξ ξ̄

2 − κ
Q
ξ ξ 2

t

)
dt + γξ ξtdB̃Q

t , (9)

where EQ(dB̃Q
t dW̃

Q
t ) = ρ̃tdt , and EQ(dB̃Q

t dW
Q
t ) = ρ̄tdt . It is

straightforward to derive that VIX2
t = a + bσ 2

t + cξ 2
t , where a,

b, and c depend on parameters under the risk-neutral measure
Q. The VIX-based IRL estimator converges to

1
t

∫ t

0

bγ ρsσs + cγξ ρ̄sξs√
b2γ 2σ 2

s + c2γ 2
ξ ξ 2

s

ds �= 1
t

∫ t

0
ρsds = ILt .

The typical justification for one of the two factors, say ξ 2
t , is that

it captures the dynamics of the long-term variance, which has
a much smaller γξ compared to γ , as implied from the empir-
ical data, see, for example, Song and Xiu (2014). In addition, c
is smaller relative to b, since the maturity of the VIX is only one
month. As a result, the IRL estimator may approximate IL very
well, despite being inconsistent (this is also what we find in our
simulations).

Besides the VIX, alternative volatility instruments can also
be used. For example, for the S&P 500 index, we can use the
intraday VIX futures or VIX options, which require a stronger

assumption that the state-price densities of the implied variance
only depend on σ 2

t . For individual equities, the VIX can be cal-
culated. (The CBOE has already calculated the VIX for a lim-
ited number of stocks since January 7, 2011.) Alternatively, the
Black–Scholes implied volatility with a fixed maturity andmon-
eyness can be used as a volatility instrument. Assumption 2 is
satisfied if the marginal state price density of Xt only depends
on σ 2

t , and the option price is homogenous of degree 1, see, for
example, Joshi (2002) and Song and Xiu (2014). More specifi-
cally, suppose that

C(X, σ 2
t , k,T − t ) = exp(X ) ·C(0, σ 2

t ,m,T − t ),

where C is the price of a European call option with a log strike
price k and a fixed maturity date T , and m = k − X is a fixed
log-moneyness. (Since X is time-varying, fixed log-moneyness
implies that kneeds to be changed over time.) It then follows that
the Black–Scholes implied volatility is a deterministic function
of σ 2

t .

4.2. IRL Estimator and Its Asymptotic Distribution

We now develop the asymptotic theory for the IRL, which
exploits additional information embedded in the instrument.
Our asymptotic results of the IRL estimator draw exten-
sively from the general theoretical framework of Jacod and
Rosenbaum (2013).

Suppose we have a sample of equidistant observations on
X and Z over the interval [0, t]. Denote the distance between
adjacent observations by 
n. Partition all observations into
nonoverlapping blocks, indexed by i = 0, 1, 2, . . . , [t/(kn
n)],
so that each block contains kn observations. We can then esti-
mate the spot leverage effect at time ikn
n using the local trun-
cated realized correlation between X and Z,

ρ̂ikn+1 =
∑kn−1

j=0

(

n

ikn+1+ jZ
) (


n
ikn+1+ jX

)
· 1{∣∣∣
n

ikn+1+ jZ
∣∣∣≤u′

n

}1{∣∣∣
n
ikn+1+ jX

∣∣∣≤un
}√∑kn−1

j=0

(

n

ikn+1+ jZ
)2

1{∣∣∣
n
ikn+1+ jZ

∣∣∣≤u′
n

}√∑kn−1
j=0

(

n

ikn+1+ jX
)2

1{∣∣∣
n
ikn+1+ jX

∣∣∣≤un
} , (10)

where we truncate jumps in X and Z using thresholds un and
u′
n. The choice of un and u′

n is standard in the literature, see, for
example, Aït-Sahalia and Jacod (2014). It is crucial to truncate
jumps here as the true spot correlation is only defined for the
continuous components. As the length of the local window kn
n
shrinks to zero, ρ̂ikn+1 approximates the spot leverage ρikn
n ,

ρ̂ikn+1 ≈ [Z,X]c,′s√
[Z,Z]c,′s

√
[X,X]c,′s

= f ′ (s, σ 2
s
)
[X, σ 2]c,′s√[

f ′ (s, σ 2
s
)]2 [σ 2, σ 2]c,′s

√
[X,X]c,′s

= [X, σ 2]c,′s√
[σ 2, σ 2]c,′s

√
[X,X]c,′s

= ρs, where s = ikn
n.

(11)

Notice how this relationship holds for any smooth function f . In
particular, the spot leverage ρs is invariant to functional trans-
formations of σ 2 andX , a property that is analogous to the linear
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invariant property of the standard correlation of two random
variables. This property is important in that it eliminates the
impact of risk premia embedded in the pricing function f . A
consistent estimator of the IL is thereby a Riemann sum of the
estimators of the spot leverage, but it has an asymptotic bias.

Define the IRL as follows:

IRLt = kn
n

t

[t/kn
n]−1∑
i=0

(
ρ̂ikn+1 − 1

2kn

((
ρ̂ikn+1

)3 − ρ̂ikn+1

))
.

(12)

The following theorem presents the asymptotic distribution of
the IRL estimator.
Theorem 2. Suppose Assumptions 1 and 2 hold. Let un 
 
�

n ,
u′
n 
 
�

n , and suppose 5/(12 − 2r) ≤ � < 1/2. Then, for any
fixed t , and as 
n → 0, k2n
n → 0 and k3n
n → ∞, we have


−1/2
n (IRLt − ILt )

L−s→ Z
√
V IRL
t ,

where V IRL
t = 1

t2

∫ t

0

(
1 − 2ρ2

s + ρ4
s
)
ds,

and Z is a standard normal random variable defined on the
extension of the original probability space. (The convergence
here is stable in law, see, for example, chap. 2.2.1 of Jacod and
Protter (2012) for a detailed review.)

The estimator of the asymptotic variance can be constructed
similarly,

V̂ IRL
t = kn
n

t2

[t/kn
n]−1∑
i=0

(
1 − 2

(
ρ̂ikn+1

)2 + (
ρ̂ikn+1

)4)
.

An alternative way to estimate the asymptotic variance is
by applying the subsampling method of Kalnina (2011) and
Kalnina (2015). While the sampling period above is fixed at
[0, t] such as 1 month, we typically apply the IRL estimator
to a sequence of time periods in practice. Therefore, we pro-
vide uniform confidence bands of IL across different periods.
Suppose the τ th sampling month is [(τ − 1)t, τ t], and there
are N months in total. Let IL(τ ) denote the integrated leverage
at month τ , and IRL(τ ) and V IRL(τ ) be its estimator and the
asymptotic variance. Then a nominal level 1 − α uniform con-
fidence band for IL(τ ) is given by

CIn(τ ; 1 − α) =
[
IRL(τ ) − zN,α
1/2

√
V̂ IRL(τ ), IRL(τ )

+ zN,α
1/2
√
V̂ IRL(τ )

]
,

where zN,α is the 1 − α quantile of the variable max1≤τ≤N |Nτ |
and {Nτ : 1 ≤ τ ≤ N} are independent standard normal vari-
ables. The asymptotic property of the above confidence band
follows from the asymptotic independence of the estimation
errors across nonoverlapping periods, as is typical in the high-
frequency setting.

For the purpose of estimating the spot correlation, only the
rate 


−1/2
n of the tuning parameter kn is compatible with the

optimal rate of convergence, see Alvarez et al. (2012). Interest-
ingly, Theorem 2 and its proof show that for the purpose of esti-
mating the integrated correlation, a slower rate for kn ensures

the feasibility of the inference by diminishing asymptotic biases,
while maintaining the same asymptotic variance as in the case
when kn is of order 


−1/2
n . The final estimator is easy to con-

struct and has a simple expression for the asymptotic variance.
OurMonteCarlo simulations suggest it also has good finite sam-
ple performance.

An alternative estimator can be constructed by using overlap-
ping blocks of size kn. Such an estimator shares the same asymp-
totic distribution with the nonoverlapping estimator. This fea-
ture has been shown by Jacod and Rosenbaum (2013) for their
estimator. We use the nonoverlapping implementation because
it is faster.We find that both implementations have similar finite
sample performance.

5. Specification Test

In the presence of a valid volatility instrument, the IRL is more
efficient than the PRL, in the sense that it has a faster rate of
convergence. This increase in precision does not come without
a cost. The IRL estimator requires the availability of a volatil-
ity instrument, which might not be available for all stocks. It
also assumes that Assumption 2 adequately describes the data
used. Besides, the IRL has two practical disadvantages. First, the
use of two high-frequency time series creates biases due to asyn-
chronicity. Second, the derivatives are typically less liquid than
the underlying stocks, which results in higher levels of the mar-
ket microstructure noise. Both issues can be mitigated by using
lower sampling frequencies, which leads to data loss.

It is of interest to test whether the two estimators, the PRL
and the IRL, converge to the same limit. We use a Durbin–Wu–
Hausman statistic, that is, a standardized difference between the
PRL and the IRL estimators. It can be used as a specification test
of Assumption 2.

Corollary 3. Suppose Assumptions 1 and 2 hold. In addition,
σt is a continuous Itô semimartingale. Let un 
 
�

n , u′
n 
 
�

n ,
and suppose 0 ≤ r < 1/3 and 5/(12 − 6r) ≤ � < 1/2. Let PRL
be defined by Equation (7) with k′

n observations in each of the
long blocks and ln observations in each of the short blocks.
Let IRL be defined by Equation (12) with kn observations in
each block. Suppose β = ln

√

n ∈ (0,∞). Then, for any fixed

t , and as 
n → 0, k2n
n → 0, k3n
n → ∞, (k′
n)

3
2
n → ∞, and

(k′
n)

4
3
n → 0, we have


−1/4
n

PRLt − IRLt√
V̂ PRL
t

L−s→ Z, (13)

where V̂ PRL
t is given in Equation (8) andZ is a standard normal

random variable defined on the extension of the original prob-
ability space.

This test is consistent against those alternatives, under which
our asymptotic theory for the PRL estimator continues to hold,
while the IRL estimator becomes inconsistent. Corollary 3 fol-
lows immediately from Theorems 1 and 2. The first-order
asymptotic distribution of the test statistic does not reflect the
estimation error in the IRL because it has a faster rate of conver-
gence than that of the PRL. One alternative that can capture this
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additional estimation error is to use a subsampling-based esti-
mation of the asymptotic variance of the test instead of V̂ PRL

t , see
Kalnina (2015).

6. Simulations

This section considers the finite sample properties of the PRL,
and of the IRL using the VIX as a volatility instrument.

We first consider two different models of price and volatility
dynamics, the generalized Heston and the log volatility (LogV)
models. In the Heston model, the log-price X under the objec-
tive measure satisfies

dXt = (μ0 + μ1σ
2
t )dt + σtdWt + JXdNt − λtμXdt,

dρ2
t = κρ(ρ̄ − ρt )dt + γρ

√
1 − ρ2

t dBt ,

dσ 2
t = κ(ξ − σ 2

t )dt + γ σtdW̃t + Jσ 2dNt − βσ 2λtdt,

where Wt and W̃t are two Brownian motions with correlation
ρt , Bt is another independent Brownian Motion, Nt is a Poisson
process with state-dependent intensity λt = λ0 + λ1σ

2
t , JX is a

random jump size of X satisfying JX ∼ N(μX , σ 2
X ), and Jσ 2 is a

random jump size of σ 2
t satisfying Jσ 2 ∼ exp(βσ 2 ). We set the

parameters to the values typically used in the literature: κ = 5,
γ = 0.35, κρ = 4, γρ = 0.2, ρ̄ = −0.8, ξ = 0.06,μX = 0, σX =
0.05, βσ 2 = 0.01, λ0 = 30, λ1 = 60, μ0 = 0.05, and μ1 = 0.5.
We assume the risk-neutral dynamics follows the same model,
but with different parameters. In this case, VIX2

t = a + bσ 2
t ,

where the constants a and b depend on the parameters of the
risk-neutral dynamics of X . Since our analysis depends on the
risk-neutral parameters through the use of the VIX, we only
need to choose the values of a and b. According to our calibra-
tion, we set VIX2

t = 1002 · (0.06 + 0.63σ 2
t ).

In the LogVmodel, the log-price X under the objective mea-
sure satisfies

dXt = (μ0 + μ1σ
2
t )dt + σtdWt + JXdNt − λμXdt,

dρ2
t = κρ(ρ̄ − ρt )dt + γρ

√
1 − ρ2

t dBt ,

dFt = κFtdt + σdW̃t + JFdNt − μFλdt,
σ 2
t = exp (α + βFt ) ,

where again Wt and W̃t are two Brownian motions with cor-
relation ρt , Bt is another independent Brownian Motion, Nt is
a Poisson process with intensity λ, JX ∼ N(μX , σ 2

X ), and JF ∼
N(μF , σ

2
F ). We set the values of the parameters to α = −2.8,

β = 3, ρ̄ = −0.8, μX = 0, σX = 0.05, μF = 0.02, σF = 0.02,
σ = 0.8, κ = −4, λ = 20, μ0 = 0.05, and μ1 = 0.5. If the risk-
neutral dynamics of X follows the same model, then VIX2

t =
a + bσ 2d

t for some constants a, b, and d, where a, b, and d
depends on the risk-neutral parameters. We set VIX2

t = 1002 ·
(0.1 + 0.75σ 2×0.8

t ).
We fix the truncation levels (values of un and u′

n) to be

3
√

ˆ[Y,Y ]
c
t/t
0.47

n , whereY is either the return of the stock or the
change in theVIX, and [Y,Y ]ct is estimated by bipower variation,
see Barndorff-Nielsen and Shephard (2004) and Aït-Sahalia and
Jacod (2012). For the IRL estimator, the rule-of-thumb choice
of the block size kn is approximately between 0.1 × 
−0.5

n and

0.5 × 
−0.5
n , corresponding to a window that is typically a cou-

ple of hours, as used by Aït-Sahalia and Xiu (2014) and Li and
Xiu (2015). Since we use nonoverlapping windows, we try to
choose one among the divisors of the total number of observa-
tions within the desired ranges of kn’s. This helps improve the
finite sample performance. For the PRL, the size of the smaller
block ln is around 5 × 
−0.5

n , whereas the rule-of-thumb range
of the larger block size kn is approximately between 2 × 
−0.7

n
and 10 × 
−0.7

n .
In Figure 1, we provide histograms based on 1000 repeti-

tions of the IRL estimator using 1 min returns spanning a 5 day
window in the Heston and LogV models. In both cases consid-
ered, the IRL estimator can recover the integrated leverage pre-
cisely, and its finite sample distribution is close to the asymptotic
distribution.

Table 1 provides a robustness check for the performance
of the IRL estimator for different frequencies, time spans, and
bandwidths (kns). In all cases, the IRL estimator performs well,
with the best performance in the case of 1 week, 1 min data,
which has the largest number of observations among the sce-
narios in Table 1.

Finally, we investigate the performance of both leverage esti-
mators using amulti-factor volatilitymodel. Under the objective
measure, we have

dXt = (μ0 + μ1σ
2
t )dt + σtdWt + JXdNt − λtμXdt,

dρ2
t = κρ(ρ̄ − ρt )dt + γρ

√
1 − ρ2

t dBt ,

dσ 2
t = (

η + κ(ξ 2
t − σ 2

t )
)
dt + γ σtdW̃t ,

dξ 2
t = κξ (ξ̄

2 − ξ 2
t )dt + γξ ξtdB̃t ,

whereWt andW̃t are two Brownianmotions with correlation ρt ,
Bt and W̃t are two additional independent Brownian motions,
Nt is a Poisson process with state-dependent intensity λt = λ0 +
λ1σ

2
t , JX is a random jump size of X satisfying JX ∼ N(μX , σ 2

X ).
We choose parameters as follows: κ = 5, η = 0.5, κξ = 2, κρ =
4, γ = 0.35, γξ = 0.3, γρ = 0.2, ρ̄ = −0.8, ξ̄ 2 = 0.06, μX = 0,
σX = 0.05, λ0 = 15, λ1 = 60, μ0 = 0.05, and μ1 = 0.5. If the
risk-neutral dynamics follows the same model, then VIX2

t =
a + bσ 2

t + cξ 2
t , where the constants a, b, and c depend on the

parameters of the risk-neutral dynamics of X . We set them to
VIX2

t = 1002 · (0.3 + 0.75σ 2
t + 0.15ξ 2

t
)
, to match the observed

empirical data.
In this multi-facto volatility model, Assumption 2 is violated.

Therefore, our results for the IRL estimator do not apply, while
the results for the PRL estimator continue to hold. Table 2 and
Figure 2 demonstrate the behavior of the two estimators in this
model. Figure 2 shows that IRL is biased (top left plot); the finite
sample distribution is therefore shifted away from the asymp-
totic distribution (bottom left plot). On the other hand, the finite
sample distribution of the PRL estimator is very close to the
asymptotic distribution. The bias of the PRL estimator is small
relative to the standard deviation (top right plot), but it has
clearly much larger variability than the IRL estimator. Table 2
considers multiple settings and choices of the bandwidth. The
absolute bias of the IRL estimator is sometimes smaller and
sometimes larger than that of the PRL estimator. However, due
to the much smaller variability of the IRL estimator, it has a
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Figure . Simulation results: The IRL estimator. Note: The upper panel provides the histograms of the IRL, whereas the bottom panel plots the standardized histograms.
The solid lines denote ρ̄ or the standard normal density. The parameters are
n = 1min, T = 5 days, and kn = 78.

much smaller root mean squared error (RMSE) in all settings
considered.

The choice between the IRL and the PRL estimator therefore
depends on the exact loss function of the researcher. The PRL
estimator does not rely on Assumption 2, hence it is valid in a
much larger class of models. The cost is larger variability of the
resulting estimates compared to the IRL.

7. Empirical Results

7.1. Data and Preliminary Analysis

We consider an empirical application that uses the IRL estima-
tor. We use intraday time series of E-mini S&P 500 futures and
the VIX from the Tick Data Inc. The VIX sample period starts
from September 22, 2003, when the CBOE began disseminating

Table . Simulation results: The IRL estimator.

Heston:  week,  min LogV:  week,  min

bias . . . . . .
RMSE . . . . . .

Heston:  week,  min LogV:  week,  min

bias . . . . . .
RMSE . . . . . .

Heston:  month,  min LogV:  month,  min

bias . . . . . .
RMSE . . . . . .

Heston:  month,  min LogV:  month,  min

bias . . . . . .
RMSE . . . . . .

NOTE: Rows “bias”and “IQR”contain the average and interquartile rangeacross sim-
ulations of the estimation error IRLt − ILt . For a given model, the three columns
correspond to different bandwidths kn , which are as follows: , , and  for 
min sampling; , , and  for min sampling; , , and  for min sampling.

prices for the VIX with the new methodology, and ends on
December 31, 2013. We extend the intraday VIX series to Jan-
uary 1, 2003, by calculating the VIX using intraday options,
based on the method developed by the CBOE, so that the full
sample period covers 11 years in total. (See the CBOE White
article on VIX at http://www.cboe.com/micro/vix/vixwhite.pdf.)
We obtain a time series of the E-mini S&P 500 future prices by
rolling over the front contracts. After removing nontrading days
or half-trading days, our sample contains 2769 days. Overnight
returns are excluded fromour data. Figure 3 plots the time series
of the intraday E-mini S&P 500 futures and the VIX from Jan-
uary 1, 2003 to December 31, 2013. After investigation of the
signature plots of the IRL, we choose the sampling frequency of
every 30 min for further time series analysis.

Table . Simulation results: The multi-factor volatility model.

PRL:  month,  sec IRL:  month,  sec

bias . −. −. . . .
RMSE . . . . . .
% outside [−,] . . . . . .

PRL:  years,  min IRL:  years,  min

bias −. . . . . .
RMSE . . . . . .
% outside [−,] . . . . . .

PRL:  years,  min IRL:  years,  min

bias −. . . . . .
RMSE . . . . . .
% outside [−,] . . . . . .

NOTE: For a given time span and frequency, the three columns correspond to dif-
ferent bandwidths. For the IRL, they are: kn = 150, 3120, and 6240 for  sec sam-
pling, kn = 39, 78, and 117 for  min sampling, and kn = 26, 39, and 78 for min
sampling. Choice of parameters for the PRL: for  sec data, the small block length
is 1/2 day, the long subsamples are , , and  days; for  min data, the small block
is  days, and the large blocks are , , and  months; for  min data, the small
block is  days, and the large blocks are , , and  months.

http://www.cboe.com/micro/vix/vixwhite.pdf
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Figure . Simulation results: themulti-factor volatility model. Note: The top panel provides the histograms of the IRL and PRL estimators, whereas the right panel plots the
standardized histograms. The gray areas show the histograms of the PRL estimators. The solid lines denote ρ̄ or the standard normal density. The parameters are
n = 1
min and T = 2 years. For the PRL, the small block (with ln observations) is three days long, and the large block (with kn observations) is two months long. For the IRL,
kn = 78.

7.2. Time Series Analysis

The current section implements a time series analysis of the
leverage effect of the S&P500 index. We use the IRL estimator.
The PRL estimator is noisy over short time intervals such as 1
month and hence not very informative about the variation of
the true leverage effect across time. We use the VIX index as a
volatility instrument.

We first plot themonthly time series based on the IRL estima-
tor in Figure 4, calculated using 30 min frequency. The average
for the VIX-based IRL is −0.745. Both the time series pattern
and the average leverage effect are not sensitive to the choice of
θ and sampling frequencies (15 min and lower).

The time series plot suggests two observations. First, our esti-
mates indicate that the Brownian co-movement between the
S&P 500 and its volatility is very pronounced and cannot be
ignored. This challenges the pure jump specification of volatil-
ity process as suggested by Todorov and Tauchen (2011). Sec-
ond, the correlation between the driving Brownian motions of
the price and the volatility is clearly negative and time-varying.

Figure . Time series of the E-mini S&P  future prices and the VIX. Note: This
figure plots the time series of the intraday E-mini S&P  futures and the VIX from
January , , to December , .

It is interesting to explore if the documented time variation
in the leverage effect estimates is related to variation in finan-
cial variables. For this purpose, we conduct the following regres-
sion analysis. First, we select the following economic variables:
a measure of the credit risk, the default spread (DEF), calculated
as the monthly difference between Moody’s Seasoned BAA and
AAA corporate bond yields from the FRED; an illiquidity mea-
sure (ILLIQ), which is constructed by amonthly value-weighted
firm-wise Amihud measure using CRSP data (Amihud 2002); a
crisis dummy variable (NBER, 1 = crisis), constructed accord-
ing to the NBER’s Business Cycle Dating Committee; and the
logarithm of the monthly total debt-to-total-equity ratio (DER)
of the S&P 500 index, downloaded from Bloomberg. (The debt-
to-equity ratio for S&P 500 index is construed by Bloomberg,
as the sum of short-term and long-term borrowing divided by
the total shareholder’s equity, where the latter is equal to the
sum of preferred equity, minority interest, and total common
equity. We have also constructed the TED spread, the difference

Figure . Time series of leverage effect estimates. Note: This figure plots the
monthly integrated leverage effect estimates of the E-mini S&P  futures for the
years – using  min data, together with the uniform confidence intervals
in gray.
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Table . Time series regression results.

Variable () () () () () ()

DEF − .∗ .
(.) (.)

ILLIQ − .∗∗ − .∗∗
(.) (.)

DER − .∗ − .∗∗
(.) (.)

NBER − .∗∗ − .∗∗
(.) (.)

AR .∗∗∗ .∗∗∗ .∗∗∗ .∗∗∗ .∗∗∗ .∗∗∗
(.) (.) (.) (.) (.) (.)

adj. R2 . . . . . .

NOTE: Column () contains the results of the time series regression ()with the VIX-
based IRL as the dependent variable. Columns ()–() contain results of the corre-
sponding simple regressions. DERdenotes the log total debt-to-total-equity ratio
of the S&P index,DEFdenotes theDefault spread, ILLIQ is amonthly illiquidity
measure, and NBER denotes the crisis dummy. The reported standard errors are
based on the Newey–West procedure. All regressions include an intercept, which
is not reported. ∗∗∗, ∗∗, ∗ denote significance at %, % and % levels.

between the three-month LIBOR and the three-month T-Bill
interest rate obtained from the FRED, a liquidity measure from
Pastor and Stambaugh (2003), as well as an equally weighted
firm-wise Amihud illiquidity measure. An earlier draft includes
the results based on these measures. The economic interpreta-
tion of the regression results is robust to the choice of different
variables.) Our sample consists of monthly leverage effects over
11 years, which is a total of 132 observations.

We estimate the following AR(1) regression:

LEVt = β0 + β1εDEF,t + β2εILLIQ,t + β3εDER,t

+β4NBERt + β5LEVt−1 + εt , (14)

where ε·,t denotes the corresponding AR(1) innovation of each
covariate. From the regression results in Table 3, we find that the
credit and liquidity factors are relevant to the leverage effect and
their coefficients have signs consistent with the economic intu-
ition (recall the dependent variable is negative). They imply that
the leverage effect is magnified in bad times, that is, a 1 percent-
age drop of stock price when credit risk is high and liquidity is
low, may lead to a larger percentage increase of risk. The same
conclusion holds with NBER dummy, that is, crisis periods dis-
play a larger leverage effect. Moreover, the debt-to-equity ratio
is significant, which supports the financial leverage hypothesis
of Black (1976) that the debt-to-equity ratio is one of the deter-
minants of the leverage effect. The latter finding is robust with
respect to various alternative specifications, which are omitted
for brevity.

7.3. Specification Test

We now implement the Durbin–Wu–Hausman test of Section
5. The test statistic is given in Equation (13). We use 30 min
observations of E-mini S&P 500 future prices and the VIX
index observations at the same frequency. The PRL estimator
is−0.634 (with the standard error 0.073), while the IRL estima-
tor is−0.745. The p-value of the two-sided test is 0.13, so we do
not reject the null hypothesis of PRL and IRL yielding the same
estimates in large samples.

8. Conclusion

Wepropose two nonparametric estimators of the leverage effect.
The first estimator, PRL, only uses the price data, and corrects
for biases that arise due to the preliminary estimation of volatil-
ity. Our proof of the asymptotic distribution of the PRL extends
several keymethods in the literature. Our second estimator, IRL,
uses the data from two sources, the stock price aswell as a volatil-
ity instrument such as Black–Scholes implied volatility or the
VIX. We provide the asymptotic theory for the IRL estimator
as well. The two estimators we develop are complementary to
each other and have their own advantages and disadvantages.
The PRL estimator is valid in a very general class of models,
while the IRL estimator has a faster rate of convergence. Empiri-
cally, we find the PRL estimator has much larger standard errors
than the IRL estimator, but is nevertheless useful for estimating
the integrated leverage effect over the span of several years. We
conduct a time-series study with the IRL, and find significant
relationship between the leverage effect and the debt-to-equity
ratio, which supports the leverage hypothesis of Black (1976).

Supplementary Materials

Appendix A contains the proof of Theorem 1 of the main text. Appendix B
contains the proof of Theorem 2 of the main text. Appendix C contains the
proof of Lemma A2, which is stated in Appendix A. Appendix D contains
the proof of Lemma A3, which is stated in Appendix A.
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Appendix

A Proof of Theorem 1

We start by introducing some notation. Our notation is similar to that of the proofs for
Chapter 8 in Aı̈t-Sahalia and Jacod (2014) whenever possible.

A.1 Notation

We denote the continuous component of X as X ′, that is, X ′t =
∫ t

0
bsds +

∫ t
0
σsdWs, and use

prime to denote the estimators based on X ′:

ĉ′i =
1

kn∆n

kn−1∑
j=0

(
∆n
i+jX

′)2
,

ĉ
(X,c)′
i =

1

lnkn∆n

kn−1∑
j=0

(σ̂2′
i+j+ln − σ̂

2′
i+j)(X

′
(i+j−1+2ln)∆n

−X ′(i+j−1)∆n
),

ĉ
(c)′
i =

3

2lnkn∆n

kn−1∑
j=0

[
(σ̂2′

i+j+ln − σ̂
2′
i+j)

2 − 4

ln

(
σ̂2′
i+j

)2
]
,

σ̂2′
i =

1

ln∆n

ln−1∑
j=0

(
∆n
i+jX

′)2
.

With this notation, Ĉ ′i is a symmetric matrix with (1, 1), (1, 2) and (2, 2) elements being ĉ′i,

ĉ
(X,c)′
i , and ĉ

(c)′
i , respectively. In addition, we define

C̄(i−1)∆n =
1

kn

kn−1∑
s=0

C(i+s−1)∆n , αi = Ĉ ′i− C̄(i−1)∆n , β̄i = C̄(i−1)∆n−C(i−1)∆n , βi = αi+ β̄i.

Next, we introduce some notations that will be used to rewrite αi. To do this, we define

ε (1)ns =

{
−1, if 0 ≤ s < ln
1, if ln ≤ s < 2ln

, ε (2)ns = (s+ 1) ∧ (2ln − s− 1), ε (3)ns = 1,

ynu,v =

{
3

2l3n
, if u, v ∈ {1, 2}

1
l2n

otherwise.
, ε̄(1)ns = 1, ε̄(2)ns = ln − s− 1,

ζ(1)ni =
1

∆n

(∆n
iX
′)

2 − c(i−1)∆n , ζ(2)ni = ∆n
i c, ζ(3)ni = ∆n

iX
′.

Moreover, we introduce

A (1;u, v)ni =
kn−1∑
s=0

Γ (u, v)n0 ζ (u)ni+s ζ (v)ni+s ,
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A (2;u, v)ni =
kn+2ln−2∑

s=0

(
γ (u, v; 0)ns−kn+1,s+1 − 1{s≤kn−1}Γ (u, v)n0

)
ζ (u)ni+s ζ (v)ni+s ,

A (3;u, v)ni =
kn+2ln−2∑

s=0

(
2ln−1∑
m=1

γ (u, v;m)ns−kn+1,s+1 ζ (u)ni+s−m − 1{s≥2ln−1}ρ (u, v)ni+s

)
ζ (v)ni+s ,

A (4;u, v)ni =
kn+2ln−2∑
s=2ln−1

ρ (u, v)i+s ζ
′ (v)ni+s ,

where we use

γ (u, v;m)nj,L = ynu,v

(L−m−1)∧(2ln−m−1)∑
q=0∨(j−m)

ε (u)nq ε (v)nm+q ,

Γ(u, v)nm = γ (u, v;m)n0,2ln = ynu,v

2ln−m−1∑
q=0

ε (u)nq ε (v)nm+q ,

Z (u, v)ni =
kn+2ln−2∑
j=2ln−1

ρ (u, v)i+j ζ
′′ (v)ni+j , ρ(u, v)ni =

2ln−1∑
m=1

Γ(u, v)nmζ(u)ni−m.

For a similar purpose, we define:

Ā (0)i =
6

l2n

kn−1∑
j=0

(
c(i+j−1)∆n

)2
,

Ā (1;u)ni =
12

l3n

kn−1∑
j=0

(
c(i+j−1)∆n

ln−1∑
m=0

ε̄ (u)nm ζ (u)ni+j+m

)
,

Ā (2;u, v)ni =
kn+ln−2∑
j=1

γ̄ (u, v; 0)nj−kn+1,j ζ (u)ni+j ζ (v)ni+j ,

Ā (3;u, v)ni =
kn+ln−2∑
j=1

(ln−1)∧j∑
m=1

γ̄ (u, v;m)nj−kn+1,j ζ (u)ni+j−m ζ (v)ni+j ,

γ̄ (u, v;m)nj,s =
6

l4n

(s−m)∧(ln−m−1)∑
q=0∨(j−m)

ε̄ (u)nq ε̄ (v)nq+m .

Now we can write αi as the sum of ηi and κi, where κlmi and ηlmi are defined as follows,

κ12
i =

1

kn∆n

2∑
u=1

(A (1;u, 3)ni + A (2;u, 3)ni + A (3;u, 3)ni + A (4;u, 3)ni + A (3; 3, u)ni + A (4; 3, u)ni )

− 1

kn

kn−1∑
s=0

C12
(i+s−1)∆n

,
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κ22
i =

1

kn∆n

2∑
u,v=1

(
A(1;u, v)i + A(2;u, v)i + 2A(3;u, v)i + 2A(4;u, v)i − Ā (2;u, v)ni − 2Ā (3;u, v)ni

)
− 1

kn∆n

Ā (0)ni −
1

kn∆n

2∑
u=1

Ā (1;u)ni −
1

kn

kn−1∑
s=0

C22
(i+s−1)∆n

,

κ11
i =α11

i , κ12
i = κ21

i ,

η12
i =

1

kn∆n

2∑
u=1

(Z (u, 3)ni + Z (3, u)ni ) , η22
i = 2

1

kn∆n

2∑
u,v=1

Z(u, v)i, η11
i = 0, η12

i = η21
i .

We develop the asymptotic distribution of these estimators below. First, we obtain that
Γ (u, v)nm equals (first column for the case when m ≤ ln − 1, second column for the case when
m ≥ ln):

Γ (1, 1)nm = 6ln−9m
2l3n

, −6ln−3m
2l3n

;

Γ (1, 3)nm = −m
l2n

, −2ln−m
l2n

;

Γ (3, 1)nm = m
l2n

, 2ln−m
l2n

;

Γ (1, 2)nm = −12lnm−9m2+6ln−9m
4l3n

, −3(2ln−m)(2ln−m−1)
4l3n

;

Γ (2, 1)nm = 12lnm−9m2−6ln+9m
4l3n

, 3(2ln−m)(2ln−m+1)
4l3n

;

Γ (2, 2)nm = 4l3n−6lnm2+3m3+2ln−3m
4l3n

, (2ln−m)3−2ln+m
4l3n

;

Γ (2, 3)nm = 2l2n−m2+m
2l2n

, (2ln−m)(2ln−m+1)
2l2n

;

Γ (3, 2)nm = 2l2n−m2−m
2l2n

, (2ln−m)(2ln−m−1)
2l2n

.

.

Moreover, we define

H (u, v;u′v′)n = znu,u′z
n
v,v′

2ln−1∑
m=0

Γ (u, v)nn Γ (u′, v′)
n
n , where znu,v =

{
1/∆n if u = v = 1

1 otherwise
,

and derive its limit as

√
∆nH (u, v;u′v′)n →



3/β3 if (u, v, u′, v′) = (1, 1, 1, 1)
3/4β if (u, v, u′, v′) = (1, 2, 1, 2) , (2, 1, 2, 1)
5/8β if (u, v, u′, v′) = (1, 2, 1, 3) , (2, 1, 3, 1)
2/3β if (u, v, u′, v′) = (1, 3, 1, 3) , (3, 1, 3, 1)
151β/280 if (u, v, u′, v′) = (2, 2, 2, 2)
151β/240 if (u, v, u′, v′) = (2, 2, 2, 3) , (2, 2, 3, 2)
23β/30 if (u, v, u′, v′) = (2, 3, 2, 3) , (2, 3, 3, 2) , (3, 2, 3, 2)
0 otherwise

.
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Next, for convenience we define

V (u, v)t =


2 (C11

t )
2

if (u, v) = (1, 1)
C22
t if (u, v) = (2, 2)

C12
t if (u, v) = (2, 3) , (3, 2)

C11
t if (u, v) = (3, 3)

0 otherwise

.

In addition, we define

l (u, v′;u′, v′;Cs) =



12
β3 (C11

s )
4

if (u, v;u′, v′) = (1, 1; 1, 1)
3

2β
(C11

s )
2
C22
s if (u, v;u′, v′) = (1, 2; 1, 2) , (2, 1; 2, 1)

151β
280

(C22
s )

2
if (u, v;u′, v′) = (2, 2; 2, 2)

5
4β

(C11
s )

2
C12
s if

{
(u, v;u′, v′) = (1, 2; 1, 2) ,

(2, 1; 2, 1) , (1, 3; 1, 1) , (3, 1; 2, 1)
4

3β
(C11

s )
3

if (u, v;u′, v′) = (1, 3; 1, 3) , (3, 1; 3, 1)

151β
240

C22
s C

12
s if

{
(u, v;u′, v′) = (2, 2; 2, 3) ,

(2, 2; 3, 2) , (2, 3; 2, 2) , (3, 2; 2, 2)
23β
30
C22
s C

11
s if (u, v;u′, v′) = (2, 3; 2, 3) , (3, 2; 3, 2)

23β
30

(C12
s )

2
if (u, v;u′, v′) = (2, 3; 2, 3)

0 otherwise.

,

and

h (j, k; l,m;Ct) (A.1)

=



0, if (j, k) or (l,m) = (1, 1);∑
(u,v)∈A

∑
(u′,v′)∈A l (u, v, u

′, v′;Ct) , if (j, k, l,m) = (1, 2, 1, 2), (2, 1, 2, 1),

(2, 1, 1, 2), (1, 2, 2, 1);∑
(u,v)∈A

∑
(u′,v′)∈B l (u, v, u

′, v′;Ct) , if (j, k, l,m) = (1, 2, 2, 2), (2, 1, 2, 2),

(2, 2, 2, 1), (2, 2, 1, 2);∑
(u,v)∈B

∑
(u′,v′)∈B l (u, v, u

′, v′;Ct) , if (j, k, l,m) = (2, 2, 2, 2).

.

=



0, if (j, k) or (l,m) = (1, 1);

8
3β
c3
s + 23β

15
c

(c)
s cs + 23β

30
(c

(X,c)
s )2, if (j, k, l,m) = (1, 2, 1, 2), (2, 1, 2, 1),

(2, 1, 1, 2), (1, 2, 2, 1);
5
β
(cs)

2c
(X,c)
s + 151β

120
c

(c)
s c

(X,c)
s , if (j, k, l,m) = (1, 2, 2, 2), (2, 1, 2, 2),

(2, 2, 2, 1), (2, 2, 1, 2);
48
β3 c4

s + 12
β

(cs)
2c

(c)
s + 151β

70
(c

(c)
s )2, if (j, k, l,m) = (2, 2, 2, 2).

,

where A = {(1, 3) , (2, 3) , (3, 1) , (3, 2)} and B = {(1, 1) , (1, 2) , (2, 1) , (2, 2)}.
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A.2 Auxiliary Results

We provide a useful and general theorem here, which will be used to prove Theorem 1. The
proof of this theorem is given in Appendix A.3. To cope with a general C3 function without
imposing growth conditions of Jacod and Rosenbaum (2013), we need a spatial localization
assumption similar to those introduced in Li, Todorov, and Tauchen (2014) and Li and Xiu
(2015), which can be easily verified for the special case in Theorem 1.

Theorem A1. There exists a localizing sequence of stopping times (τm)m≥1 and a sequence
of convex compact subsets Km ⊂ M2, a 2 × 2-dimensional matrix space, such that Ct ∈ Km
for t ≤ τm and g is C3 on Kεm ≡ {M ∈M2 : infA∈Km ‖M − A‖ ≤ ε}, for some ε > 0. In
addition, suppose 0 ≤ r < 1/3 and 5/(12− 6r) ≤ $ < 1/2. Then as k3

n∆2
n →∞, k4

n∆3
n → 0,

∆−1/4
n

(
kn∆n

Nn
t∑

i=0

(
g(Ĉikn+1)− 1

2kn
√

∆n

2∑
j,k,l,m

∂jk,lmg
(
Ĉikn+1

)
h
(
j, k; l,m; Ĉikn+1

))
−
∫ t

0

g(Cs)ds

)
L−s→ Z

√
V g
t , (A.2)

where Z is a standard normal random variable defined on the extension of the original prob-
ability space, the function h is defined in (A.1), and the variance V g

t is given by

V g
t =

∫ t

0

2∑
j,k,l,m

∂jkg(Cs)∂lmg(Cs)h (j, k, l,m;Cs) ds.

In addition, we collect a few technical lemmas below, which will be used for the proof of
Theorem A1. We postpone the proofs of Lemmas A2 and A3 to the end of the appendix.
Lemma A4 collects results from Aı̈t-Sahalia and Jacod (2014), hence its proof is omitted.

Lemma A2. Under the same assumptions as in Theorem A1, we have

‖Ei−1 (βi)‖ ≤ Kkn∆n +K∆1/4
n ηni,2kn , (A.3)

Ei−1 ‖βi‖
q ≤ K

(
k−1
n ∆−1/2

n

)q/2
+Kkn∆n, q ≥ 2, (A.4)

Ei−1 ‖αi‖q ≤ K
(
k−1
n ∆−1/2

n

)q/2
, q ≥ 1. (A.5)

Lemma A3. Under the same assumptions as in Theorem A1, we have, for all (j, k, l,m),∣∣∣Ei−1

(
βjli β

km
i − k−1

n ∆−1/2
n h

(
j, k; l,m;C(i−1)∆n

))∣∣∣ ≤ Kkn∆n.

Lemma A4. Under the same assumptions as in Theorem A1, we have

|ζ ′ (1)ni | ≤ K
√

∆n

(√
∆n + ηni

)
≤ K

√
∆n, (A.6)

Ei−1 |ζ (1)ni |
q ≤ Kq, (A.7)∣∣∣ζ ′ (2)ni − b

(c)
(i−1)∆n

∆n

∣∣∣+
∣∣ζ ′ (3)ni − b(i−1)∆n∆n

∣∣ ≤ K
√

∆n

(√
∆n + ηni

)
≤ K

√
∆n, (A.8)
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Ei−1 (|ζ (2)ni |
q
) + Ei−1 (|ζ (3)ni |

q
) ≤ Kq∆

q/2
n , (A.9)∣∣∣Ei−1

((
ζ (1)ni

)2 − 2c2
(i−1)∆n

)∣∣∣ ≤ K
√

∆n, (A.10)∣∣∣Ei−1

((
ζ (2)ni

)2 − c(c)
(i−1)∆n

∆n

)∣∣∣ ≤ K
(
∆2
n + ∆3/2

n ηni
)
, (A.11)∣∣∣Ei−1

((
ζ (3)ni

)2 − c(i−1)∆n∆n

)∣∣∣ ≤ K
(
∆2
n + ∆3/2

n ηni
)
, (A.12)∣∣∣Ei−1

(
ζ (2)ni ζ (3)ni − c

(X,c)
(i−1)∆n

∆n

)∣∣∣ ≤ K
(
∆2
n + ∆3/2

n ηni
)
, (A.13)∣∣Ei−1

(
ζ (1)ni ζ (2)ni

)∣∣ ≤ K∆n, (A.14)∣∣Ei−1

(
ζ (1)ni ζ (3)ni

)∣∣ ≤ K∆n, (A.15)∥∥Ei−1β̄i
∥∥ ≤ Kkn∆n, (A.16)

Ei−1

(∥∥β̄i∥∥q) ≤ K (kn∆n)q/2 +Kkn∆n, (A.17)∣∣∣∣∣Ei−1
1

kn

kn−1∑
j=0

(
1

∆n

(ζ (2)ni ) (ζ (3)ni )− C12
(i−1)∆n

)∣∣∣∣∣ ≤ K
√

∆n, (A.18)∣∣∣∣∣Ei−1
1

kn

kn−1∑
j=0

(
1

∆n

(ζ (2)ni )
2 − C22

(i−1)∆n

)∣∣∣∣∣ ≤ K
√

∆n, (A.19)

Ei−1

∣∣∣∣∣ 1

kn

kn−1∑
j=0

(
1

∆n

(ζ (2)ni ) (ζ (3)ni )− C12
(i−1)∆n

)∣∣∣∣∣
q

≤ K
(
∆q/2
n + k−q/2n

)
, (A.20)

Ei−1

∣∣∣∣∣ 1

kn

kn−1∑
j=0

(
1

∆n

(ζ (2)ni )
2 − C22

(i−1)∆n

)∣∣∣∣∣
q

≤ K
(
∆q/2
n + k−q/2n

)
, (A.21)

where, writing Y =
(
b, b(c), σ(c), c(c), c(X,c)

)
,

ηni,j =

√√√√Ei−1

(
sup

s∈(0,j∆n]

∥∥Y(i−1)∆n+s − Y(i−1)∆n

∥∥2

)
, ηni = ηni,1. (A.22)

For all i ≤ i′ < i+ j ≤ i′ + 2kn we have

Ei−1

(
ηni′,j
)
≤ 2ηni,2kn , (A.23)

and for all t we have

kn∆nE

(
Nn

t∑
i=0

ηnikn,2kn

)
→ 0.

Additionally, if ani ’s are reals, all bounded by some constant L, then for all q ≥ 2 we have

E

(∣∣∣∣∣
2ln−1∑
j=0

anj ζ (u)ni+j

∣∣∣∣∣
q)
≤

{
KqL

ql
q/2
n if u = 1

KqL
ql
−q/2
n if u = 2, 3

. (A.24)
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Finally, for all q ≥ 2,

Ei−1

∣∣ρ (u, 3)i+2ln−1

∣∣q ≤ { Kl
−3q/2
n if v = 1

Kl
−q/2
n if v = 2, 3

. (A.25)

A.3 Proof of Theorem A1

(a) We first establish the uniform convergence of
∥∥∥Ĉikn+1 − C̄ikn∆n

∥∥∥ to 0 over i ∈ {0, 1, 2, . . . , Nn
t }.

By (4.8) of Jacod and Rosenbaum (2013), there exists a sequence of positive numbers φn
going to 0, such that

E
(∣∣ĉikn+1 − ĉ′ikn+1

∣∣) ≤ Kφn∆(2−r)$
n . (A.26)

Since we have

ĉ
(X,c)
ikn+1 − ĉ

(X,c)′
ikn+1 =

1

l2nkn∆2
n

kn−1∑
j=0

2ln−1∑
l=0

ln−1∑
k=0

{
(∆n

ikn+j+l+1X)(∆n
ikn+j+ln+k+1X)2×

1{|∆n
ikn+j+l+1X|≤un}1{|∆n

ikn+j+ln+k+1X|≤un} − (∆n
ikn+j+l+1X

′)(∆n
ikn+j+ln+k+1X

′2

}

− 1

l2nkn∆2
n

kn−1∑
j=0

2ln−1∑
l=0

ln−1∑
k=0

{
(∆n

ikn+j+l+1X)(∆n
ikn+j+k+1X)2×

1{|∆n
ikn+j+l+1X|≤un}1{|∆n

ikn+j+k+1X|≤un} − (∆n
ikn+j+l+1X

′)(∆n
ikn+j+k+1X

′2

}
,

it follows that∣∣∣ĉ(X,c)
ikn+1 − ĉ

(X,c)′
ikn+1

∣∣∣ ≤ 1

l2nkn∆2
n

kn−1∑
j=0

2ln−1∑
l=0

2ln−1∑
k=0

∣∣∣∣∣(∆n
ikn+j+l+1X)(∆n

ikn+j+k+1X)2×

1{|∆n
ikn+j+l+1X|≤un}1{|∆n

ikn+j+k+1X|≤un} − (∆n
ikn+j+l+1X

′)(∆n
ikn+j+k+1X

′2

∣∣∣∣∣.
Then we apply Lemma 13.2.6 of Jacod and Protter (2012). Using their notation, we define

X
n

i,j =

(
∆n
iX√
∆n

, . . . ,
∆n
i+j−1X√

∆n

,
∆n
i+jX

′
√

∆n

, . . . ,
∆n
i+k−1X

′
√

∆n

)
,

and consider the following functions:

F (x1, x2, . . . , xk) = x1x
2
j+1, Fu(x1, x2, . . . , xk) = x1x

2
j+11{x1≤u}1{xj+1≤u},

ηni,j = Fun/
√

∆n
(X

n

i,j+1)− Fun/√∆n
(X

n

i,j).

Then, by Lemma 13.2.6 of Jacod and Protter (2012) with m = 1, p′ = 2, s = 1, s′ = 2, applied
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to ηni,0 and ηni,j+1, there exists a sequence of positive numbers φn, such that

Ei−1

∣∣∣∣∣
(

∆n
iX√
∆n

)(
∆n
i+jX√
∆n

)2

1{|∆n
i X|≤un}1{|∆n

i+jX|≤un}

−
(

∆n
iX
′

√
∆n

)(
∆n
i+jX

′
√

∆n

)2

1{|∆n
i X
′|≤un}1{|∆n

i+jX
′|≤un}

∣∣∣∣∣ ≤ φn
(
∆(2−r)/2
n + ∆(2−r)$

n

)
.

With i and i+ j above replaced by ikn + 1 + l and ikn + 1 + k, and further note that the set
Ani = {|∆n

iX
′| ≤ un} satisfies

∑[t/∆n]
i=1 P ((Ani )c) < ∞, hence on the set Ωn

t = ∩1≤i≤[t/∆n]A
n
i ,

whose probability goes to 1 as n→∞, we have:

E
∣∣∣ĉ(X,c)
ikn+1 − ĉ

(X,c)′
ikn+1

∣∣∣ ≤ Kφn

(
∆

1−r
2

n + ∆
(2−r)$− 1

2
n

)
. (A.27)

We apply the same strategy to the function F (x1, x2, . . . , xk) = x2
1x

2
j and use Lemma 13.2.6

of Jacod and Protter (2012) again with m = 1, p′ = 3, s = 1, s′ = 2, then a similar result to

(A.27) holds for ĉ
(c)
ikn+1, i.e.,

E
∣∣∣ĉ(c)
ikn+1 − ĉ

(c)′
ikn+1

∣∣∣ ≤ Kφn

(
∆

1−r
2

n + ∆
(2−r)$− 1

2
n

)
. (A.28)

Therefore, by a maximal inequality, we have

E

(
sup

i={0,1,2,...,Nn
t }

∥∥∥Ĉikn+1 − Ĉ ′ikn+1

∥∥∥) ≤ Kφn

(
∆(2−r)$
n + ∆

1−r
2

n + ∆
(2−r)$− 1

2
n

)
(kn∆n)−1 → 0,

as long as r < 1/3 and 5/(12− 6r) ≤ $ < 1/2.
Moreover, by (A.5) of Lemma A2, applying the maximal inequality with q ≥ 4, we have

E

(
sup

i={0,1,2,...,Nn
t }

∥∥∥Ĉ ′ikn+1 − C̄ikn+1

∥∥∥q) ≤ K
(
k−1
n ∆−1/2

n

)q/2
(kn∆n)−1 → 0.

This establishes the desired uniform convergence.
By the localization assumption, we can assume that Cs ∈ K, for any 0 ≤ s ≤ t and some

convex set K ⊂ M2. By convexity, C̄s ∈ K, for 0 ≤ s ≤ t. Moreover, g is C3 on K2ε, for
some ε > 0. By the uniform convergence established above, Ĉ ′ikn∆n

∈ Kε with probability
approaching 1, uniformly over i = {0, 1, 2, . . . , Nn

t } for n large enough. Therefore, we can
restrict the domain of g on the compact set Kε ⊂ K2ε, in which we have ‖g(C)‖, ‖∂g(C)‖,
and ‖∂2g(C)‖ are all bounded. Therefore, we can assume these properties of g in the following
proof.
(b) We now decompose the left-hand side of (A.2) as:

∆−1/4
n

(
kn∆n

Nn
t∑

i=0

(
g(Ĉikn+1)− 1

2kn
√

∆n

2∑
j,k,l,m

∂2
jk,lmg

(
Ĉikn+1

)
h
(
j, k; l,m; Ĉikn+1

))
−
∫ t

0

g(Cs)ds

)
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=U(1)nt + U(2)nt + U(3)nt + U(4)nt + U(5)nt + U(6)nt ,

where

U(1)nt = ∆−1/4
n

(
Nn

t∑
i=1

∫ ikn∆n

(i−1)kn∆n

(
g
(
C(i−1)kn∆n

)
− g (Cs)

)
ds

)
−∆−1/4

n

∫ t

kn∆nNn
t

g(Cs)ds,

U(2)nt = kn∆3/4
n

Nn
t∑

i=0

∑
j,k

∂jkg (Cikn∆n) β̄
jk
ikn+1,

U (3)nt = kn∆3/4
n

Nn
t∑

i=0

(
g
(
Ĉ ′ikn+1

)
− g (Cikn∆n)−

∑
j,k

∂jkg (Cikn∆n)
(
αjkikn+1 + β̄

jk
ikn+1

)
− 1

2kn
√

∆n

2∑
j,k,l,m

∂2
jk,lmg

(
Ĉ ′ikn+1

)
h
(
j, k; l,m; Ĉikn+1

))
,

U (4)nt = kn∆3/4
n

Nn
t∑

i=0

∑
j,k

∂jkg (Cikn∆n)κjkikn+1,

U (5)nt = kn∆3/4
n

Nn
t∑

i=0

∑
j,k

∂jkg (Cikn∆n) ηjkikn+1,

U (6)nt = kn∆3/4
n

Nn
t∑

i=0

(
g
(
Ĉikn+1

)
− g

(
Ĉ ′ikn+1

))
−∆1/4

n

Nn
t∑

i=0

2∑
j,k,l,m

∂2
jk,lmg

(
Ĉikn+1

)
h
(
j, k; l,m; Ĉikn+1

)

+ ∆1/4
n

Nn
t∑

i=0

2∑
j,k,l,m

∂2
jk,lmg

(
Ĉ ′ikn+1

)
h
(
j, k; l,m; Ĉ ′ikn+1

)
.

We thereby need to analyze these terms respectively.
We start with U(1)nt . Let ξikn =

∫ ikn∆n

(i−1)kn∆n

(
g
(
C(i−1)kn∆n

)
− g (Cs)

)
ds, which is Fikn∆n-

measurable. Also, we have |E(i−1)kn

(
ξikn
)
| ≤ K(kn∆n)2 and E(i−1)kn

∣∣ξikn∣∣2 ≤ K(kn∆n)3. By
applying Doob’s inequality to the first term, we obtain

E

(
sup
s≤t
|U(1)ns |

)
≤K∆−1/4

n

 Nn
t∑

i=1

|E(i−1)kn

(
ξikn
)
|+

(
Nn

t∑
i=1

E(i−1)kn|ξikn|
2

)1/2
+Kkn∆3/4

n → 0.

Similar argument applies to U(2)nt . Denote

ξikn =
∑
j,m

∂jmg (Cikn∆n)
kn−1∑
s=0

(
Cjm

(ikn+s)∆n
− Cikn∆n

)
,

which again is F(i+1)kn-measurable. We also have |Eikn

(
ξikn
)
| ≤ Kk2

n∆n and Eikn

∣∣ξikn∣∣2 ≤
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Kk3
n∆n. Therefore, by Doob’s inequality, we have

E

(
sup
s≤t
|U(2)ns |

)
≤K∆3/4

n

 Nn
t∑

i=1

|Eikn

(
ξikn
)
|+

(
Nn

t∑
i=1

Eikn|ξikn|
2

)1/2
 ≤ Kkn∆3/4

n → 0.

Next, to analyze U(3)nt , we denote ωikn = ξikn − vikn , where

ξikn =g
(
Ĉikn+1

)
− g (Cikn∆n)−

∑
j,m

∂jmg (Cikn∆n) βjmikn+1

− 1

2kn
√

∆n

∑
j,k,l,m

∂2
jk,lmg

(
Ĉikn+1

)
h
(
j, k; l,m; Ĉikn+1

)
,

vikn =
1

2

∑
j,k,l,m

∂2
jk,lmg (Cikn∆n)

(
βjlikn+1β

km
ikn+1 − k−1

n ∆−1/2
n

∑
j,k,l,m

h (j, k; l,m;Cikn∆n)

)
,

By the mean-value theorem, Jensen’s inequality, and Lemma A2, we have that

Eikn|ωikn| ≤ KEikn

∥∥βikn∥∥3
+Kk−1

n ∆−1/2
n Eikn

∥∥βikn∥∥ ≤ Kkn∆n +Kk−3/2
n ∆−3/4

n +Kk−1/2
n .

Also, by Lemmas A2 and A3, we have |Eikn (vikn) | ≤ Kkn∆n and Eikn|vikn|2 ≤ Kk−2
n ∆−1

n .
Therefore,

E

(
sup
s≤t
|U(3)ns |

)
≤Kkn∆3/4

n

 Nn
t∑

i=1

|Eikn (vikn) |+
Nn

t∑
i=1

Eikn|ωikn|+

(
Nn

t∑
i=1

Eikn|vikn|2
)1/2

→ 0.

The next term is U(4)nt , which comprises many terms in each κlmikn+1, for which we have
already obtained the desired bounds in the proof of Lemma A2. In summary, we have shown

|Eikn(κlmikn+1)| ≤ kn∆n +K∆1/4
n ηnikn,2kn , Eikn|κlmikn+1|2 ≤ kn∆n.

This leads to U(4)nt = op(1) because by Doob’s inequality,

E

(
sup
s≤t
|U (4)ns |

)
≤kn∆3/4

n

Nn
t∑
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∑
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E |∂jmg (Cikn∆n)|
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+ kn∆3/4

n

(
Nn
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∑
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E |∂jmg (Cikn∆n)|Eikn

∣∣κlmikn+1

∣∣2)1/2

≤kn∆n

Nn
t∑

i=0

ηnikn,2kn +Kkn∆3/4
n → 0.
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Next, we investigate U(5)nt , which delivers the asymptotic distribution. Denote

ξnj,k(u, v) = kn∆3/4
n

Nn
t∑

i=1

∂jkg (Cikn∆n)
1

kn∆n

Z(u, v)nikn+1.

We first show that for any (j, k), (u, v), we have(
ξnj,k(u, v)

) L−s−→ ξ =
(
ξj,k(u, v)

)
, (A.29)

where ξ, conditionally on F , is a continuous centered Gaussian martingale with

E(ξj,k(u, v)ξl,m(u′, v′)|F) =

∫ t

0

∂jkg(Cs)∂lmg(Cs)l(u, v, u
′, v′;Cs)ds.

In fact, by rewriting the summations, we obtain

ξnj,k(u, v) = ∆−1/4
n

Nn
t∑

i=0

∂jkg (Cikn∆n)
kn+2ln−2∑
j=2ln−1

ρ(u, v)ikn+1+jζ
′′(v)nikn+1+j

= ∆−1/4
n

kn(Nn
t +1)∑

i=1

∂jkg
(
C[(i−1)/kn]kn∆n

)
ρ(u, v)i+2ln−1ζ

′′(v)ni+2ln−1.

Similar to the proof of (B.104) - (B.106) of Aı̈t-Sahalia and Jacod (2014), and using the fact
that g(·) and its derivatives are bounded, we can show that

∆−1/2
n

kn(Nn
t +1)∑

i=1

∂jkg
(
C[(i−1)/kn]kn∆n

)
∂lmg

(
C[(i−1)/kn]kn∆n

)
ρ(u, v)i+2ln−1

× ρ(u′, v′)i+2ln−1Ei−1

(
ζ ′′(v)ni+2ln−1ζ

′′(v′)ni+2ln−1

) p−→
∫ t

0

∂jkg(Cs)∂lmg(Cs)l(u, v, u
′, v′;Cs)ds,

∆−1/2
n

kn(Nn
t +1)∑

i=1

∥∥∂g (C[(i−1)/kn]kn∆n

)∥∥4 ‖ρ(u, v)i+2ln−1‖4 Ei−1

(∥∥ζ ′′(v)ni+2ln−1

∥∥4
)

p−→ 0,

∆−1/4
n

kn(Nn
t +1)∑

i=1

∂jkg
(
C[(i−1)/kn]kn∆n

)
ρ(u, v)i+2ln−1Ei−1

(
ζ ′′(v)ni+2ln−1∆n

i+2ln−1N
) p−→ 0,

where N is any bounded martingale orthogonal to W or W l for some l. Therefore, (A.29)
follows immediately from Theorem IX.7.28 of Jacod and Shiryaev (2003).

To derive the asymptotic variance for U(5)nt , we recall that

η12
i =

1

kn∆n

2∑
u=1

(Z (u, 3)ni + Z (3, u)ni ) , η22
i = 2

1

kn∆n

2∑
u,v=1

Z(u, v)i, and η11
i = 0.
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Therefore, the following expression leads to the desired formula:

h(j, k, l,m;Cs) =



0, if (j, k) or (l,m) = (1, 1);

2
2∑

u,u′,v′=1

(l(u, 3, u′, v′) + l(3, u, u′, v′)) , if (j, k, l,m) = (1, 2, 1, 2), (2, 1, 2, 1),

(2, 1, 1, 2), (1, 2, 2, 1);

2
2∑

u,u′,v′=1

(l(u, 3, u′, v′) + l(3, u, u′, v′)) , if (j, k, l,m) = (1, 2, 2, 2), (2, 1, 2, 2),

(2, 2, 2, 1), (2, 2, 1, 2);

4
2∑

u,v,u′,v′=1

l(u, v, u′, v′), if (j, k, l,m) = (2, 2, 2, 2).

=



0, if (j, k) or (l,m) = (1, 1);

8
3β
c3
s + 23β

15
c

(c)
s cs + 23β

30
(c

(X,c)
s )2, if (j, k, l,m) = (1, 2, 1, 2), (2, 1, 2, 1),

(2, 1, 1, 2), (1, 2, 2, 1);
5
β
(cs)

2c
(X,c)
s + 151β

120
c

(c)
s c

(X,c)
s , if (j, k, l,m) = (1, 2, 2, 2), (2, 1, 2, 2),

(2, 2, 2, 1), (2, 2, 1, 2);
48
β3 c4

s + 12
β

(cs)
2c

(c)
s + 151β

70
(c

(c)
s )2, if (j, k, l,m) = (2, 2, 2, 2).

,

Finally, we turn to U(6)nt . By (A.26), (A.27), (A.28), and under the condition that r < 1/2
and 3/(8− 4r) ≤ $ < 1/2, we have

kn∆3/4
n E

Nn
t∑

i=0

∣∣ĉikn+1 − ĉ′ikn+1

∣∣ ≤ Kφn∆
(2−r)$− 1

4
n → 0,

kn∆3/4
n E

Nn
t∑

i=0

∣∣∣ĉ(X,c)
ikn+1 − ĉ

(X,c)′
ikn+1

∣∣∣ ≤ Kφn
(
∆(1−2r)/4
n + ∆(2−r)$−3/4

n

)
→ 0,

kn∆3/4
n E

Nn
t∑

i=0

∣∣∣ĉ(c)
ikn+1 − ĉ

(c)′
ikn+1

∣∣∣ ≤ Kφn
(
∆(1−2r)/4
n + ∆(2−r)$−3/4

n

)
→ 0.

Then by the mean-value theorem and the boundedness of g and its derivatives, we have

kn∆3/4
n

Nn
t∑

i=0

(
g
(
Ĉikn+1

)
− g

(
Ĉ ′ikn+1

))
= op(1).

Applying the mean-value theorem again yields:

∆1/4
n

Nn
t∑

i=0

(∑
j,k,l,m

∂jk,lmg
(
Ĉ ′ikn+1

)
h
(
j, k; l,m; Ĉ ′ikn+1

)
− ∂jk,lmg

(
Ĉikn+1

)
h
(
j, k; l,m; Ĉikn+1

))
,
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which is op(k
−1
n ∆

−1/2
n ). Therefore, U (6)nt = op(1), which concludes the proof.

A.4 Return to the Proof of Theorem 1

Theorem 1 is a special case of Theorem A1 when g(Cs) = C12
s (C11

s )
−1/2

(C22
s )
−1/2

. Apparently,
g is a C3 function on any convex subset of M2 that satisfies C11

s > 0 and C22
s > 0, therefore

the spatial localization assumption is satisfied. Moreover, we have

∂12g(Cs) =
1√

C22
s C

11
s

, ∂22g(Cs) = − C12
s

2
√

(C22
s )3C11

s

, ∂11g(Cs) = − C12
s

2
√

(C11
s )3C22

s

.

∂2
12,12g (Ci) = 0, ∂2

12,22g (Ci) = −1

2

1√
(C22

s )3C11
s

, ∂2
22,22g (Ci) =

3

4

C12
s√

(C22
s )5C11

s

.

Recall that C11
s , C12

s and C22
s can be written as cs, c

(X,c)
s , and c

(c)
s , respectively. Therefore, we

can recover the expression for the bias-correction part of Theorem 1 from Theorem A1,

2∑
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+

453
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β
c

(X,c)
s (c
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s )1/2

c
1/2
s

.

Similarly, we obtain the expression for V PRL
t in Theorem 1 from Theorem A1,

V PRL
t =

∫ t

0

2∑
j,k,l,m

∂jkg(Cs)∂lmg(Cs)h(j, k, l,m;Cs)ds

=

∫ t

0

(
23

15
β +

8

3β

c2
s

c
(c)
s

− 2

β

cs(c
(X,c)
s )2

(c
(c)
s )2

+
12c3

s(c
(X,c)
s )2

β3(c
(c)
s )3

+
1

21
β

(c
(X,c)
s )2

csc
(c)
s

)
ds.

B Proof of Theorem 2

Below we introduce K as a generic constant which may change from line to line. Let υt be the
spot covariation between the continuous parts of X and Z. By the localization procedure (see
Lemma 4.4.9 in Jacod and Protter (2012)), we can assume that ‖υt‖ ≤ A0 and λ(υt) > A−1

0 ,
where λ(·) = min(υ11, υ22), for any t.

Next, introduce the “correlation” function g(·) and its regularized version gA(·), for any
A > 0, as follows,

g(υ) =
υ12√

υ11
√
υ22

1{υ11>0,υ22>0} and gA(υ) =

{
g(υ) if λ(υ) > (2A)−1

0 if λ(υ) ≤ (4A)−1.

Notice that gA(·) is a C∞ function which satisfies the polynomial growth condition in Jacod

47



and Rosenbaum (2013), namely, |∂jgA(υ)| ≤ K(1+‖υ‖3−j), for j = 0, 1, 2, 3, where ∂j denotes
the jth derivatives.

Our spot leverage estimator is ρ̂i = g(υ̂i), where

υ̂i =

(
υ̂11
i υ̂12

i

υ̂21
i υ̂22

i

)
, and

υ̂11
i =

1

kn∆n

kn−1∑
j=0

(
∆n
i+jZ

)2 · 1{|∆n
i+jZ|≤u′n},

υ̂12
i =

1

kn∆n

kn−1∑
j=0

(
∆n
i+jZ

) (
∆n
i+jX

)
· 1{|∆n

i+jZ|≤u′n}1{|∆n
i+jX|≤u′n},

υ̂22
i =

1

kn∆n

kn−1∑
j=0

(
∆n
i+jX

)2 · 1{|∆n
i+jX|≤u′n}.

We then apply Theorem 3.2 in Jacod and Rosenbaum (2013), which concludes that for any
C3 function g that satisfies the above polynomial growth condition, we have

∆−1/2
n

{
kn∆n

[t/kn∆n]−1∑
i=0

(
g(υ̂ikn+1)−

∫ t

0

g(υs)ds−
1

2kn

2∑
j,k,l,m=1

∂2
jk,lmg(υ̂ikn+1)

(υ̂jlikn+1υ̂
km
ikn+1 + υ̂jmikn+1υ̂

kl
ikn+1)

)}
L−s→

√
V IRL
t Zt,

where Z is a standard normal random variable defined on the extension of the original prob-
ability space, and V IRL

t is the conditional variance given by

V IRL
t (g) =

2∑
j,k,l,m=1

∫ t

0

∂jkg(υs)∂lmg(υs)(υ
jl
s υ

km
s + υjms υkls )ds.

Denote the bias-corrected estimators by ĜA and Ĝ, which are based on gA(·) and g(·),
respectively. The above theorem does not directly apply to Ĝ, but it does establish the
asymptotic distribution of ĜA. Note that on ΩA0

t =
{
λ(υs) > A−1

0 , for any s ∈ [0, t]
}

, we
have ∫ t

0

gA0(υs)ds =

∫ t

0

g(υs)ds and V IRL
t (gA0) = V IRL

t (g).

Therefore, in order to establish the asymptotic distribution for Ĝ, it remains to show that

∆−1/2
n

{
kn∆n

[t/kn∆n]−1∑
i=0

(
g(υ̂ikn+1)− gA0(υ̂ikn+1)

)}
p→ 0 and (B.30)
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∆−1/2
n

{
∆n

[t/kn∆n]−1∑
i=0

2∑
j,k,l,m=1

∂2
jk,lm

(
g(υ̂ikn+1)− gA0(υ̂ikn+1)

)
(υ̂jlikn+1υ̂

km
ikn+1 + υ̂jmikn+1υ̂

kl
ikn+1)

}
p→ 0.

(B.31)

In fact, by the Lipschitz continuity of λ(·), there exists some ε > 0 such that for any i,

‖υ̂i∆n − υi∆n‖ ≤ ε implies |λ(υ̂i∆n)− λ(υi∆n)| ≤ (2A0)−1,

which implies λ(υ̂i∆n) > (2A0)−1 on ΩA0
t . Hence, we have

∆1/2
n kn

[t/kn∆n]−1∑
i=0

|g(υ̂ikn+1)− gA0(υ̂ikn+1)|

≤∆1/2
n kn

[t/kn∆n]−1∑
i=0

(|g(υ̂ikn+1)|+ |gA0(υ̂ikn+1)|) 1{
|λ(υ̂ikn+1)|≤(2A0)−1

}
≤2∆1/2

n kn

[t/kn∆n]−1∑
i=0

1{
‖υ̂ikn+1−υikn+1‖>ε

}.
On the other hand, for any ε′ > 0,

∆1/2
n kn

[t/kn∆n]−1∑
i=0

1{
‖υ̂ikn+1−υikn+1‖>ε′

} p→ 0,

since

∆1/2
n kn

[t/kn∆n]−1∑
i=0

E

(
1{
‖υ̂ikn+1−υikn+1‖>ε′

}) = ∆1/2
n kn

[t/kn∆n]−1∑
i=0

P(‖υ̂ikn+1 − υikn+1‖ > ε′)

≤∆1/2
n kn

K

ε′3

[t/kn∆n]−1∑
i=0

{
E
∥∥υ̂ikn+1 − υ̂′ikn+1

∥∥3
+ E

∥∥υ̂′ikn+1 − υikn+1

∥∥3
}

≤K
ε′3
(
an∆(6−r)$−3+1/2

n + k−3/2
n ∆−1/2

n + kn∆1/2
n

)
→ 0,

where the last inequality follows by (4.8) and (4.11) of Jacod and Rosenbaum (2013), the fact
that $ ≥ 5/(12 − 2r), and that an → 0 and k2

n∆n → 0 as ∆n → 0. Hence, by (2.2.35) of
Jacod and Protter (2012), we have

∆1/2
n kn

[t/kn∆n]−1∑
i=0

|g(υ̂ikn+1)− gA0(υ̂ikn+1)| p→ 0,
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and (B.30) holds. To show (B.31), note that

2∑
j,k,l,m=1

∂2
jk,lmg(υ̂ikn+1)(υ̂jlikn+1υ̂

km
ikn+1 + υ̂jmikn+1υ̂

kl
ikn+1) = (ρ̂ni )3 − ρ̂ni

and that

∆1/2
n

∣∣∣∣∣∣
[t/kn∆n]−1∑

i=0

2∑
j,k,l,m=1

∂2
jk,lm

(
g(υ̂ikn+1)− gA0(υ̂ikn+1)

)
1{

λ(υ̂i∆n )≤(2A0)−1
}(υ̂jlikn+1υ̂

km
ikn+1 + υ̂jmikn+1υ̂

kl
ikn+1)

∣∣∣∣∣∣
≤∆1/2

n

[t/kn∆n]−1∑
i=0

∣∣∣∣∣(ρ̂nikn+1)3 − ρ̂nikn+1 −
2∑

j,k,l,m=1

∂2
jk,lmgA0(υ̂ikn+1)(υ̂jlikn+1υ̂

km
ikn+1 + υ̂jmikn+1υ̂

kl
ikn+1)

∣∣∣∣∣
× 1{

λ(υ̂ikn+1)≤(2A0)−1
}

≤K∆1/2
n

[t/kn∆n]−1∑
i=0

(
1 + (1 + ‖υ̂ikn+1‖) ‖υ̂ikn+1‖2) 1{

‖υ̂ikn+1−υikn+1‖>ε
},

and that for any ε′ > 0, by triangle inequality ‖υ̂ikn+1‖ ≤ ‖υ̂ikn+1 − υikn+1‖+ ‖υikn+1‖, and

1{
‖υ̂ikn+1−υikn+1‖>ε′

} ≤ ‖υ̂ikn+1 − υikn+1‖j

ε′j
, for j = 0, 1, 2, 3,

we have

∆1/2
n

[t/kn∆n]−1∑
i=0

E

((
1 + (1 + ‖υ̂ikn+1‖) ‖υ̂ikn+1‖2) 1{

‖υ̂ikn+1−υikn+1‖>ε′
})

≤K∆1/2
n

[t/kn∆n]−1∑
i=0

(
E
∥∥υ̂ikn+1 − υ̂′ikn+1

∥∥3
+ E

∥∥υ̂′ikn+1 − υikn+1

∥∥3
)
.

Hence, (B.31) follows from the same argument as above.
As a result, the CLT holds for Ĝ. By direct calculations, we have

2∑
j,k,l,m=1

∫ t

0

∂jkg(υs)∂lmg(υs)(υ
jl
s υ

km
s + υjms υkls )ds =

∫ t

0

(1− 2ρ2
s + ρ4

s)ds.

This establishes the asymptotic distribution of the IRL estimator.
To estimate the asymptotic variance, we define

V̂ IRL
t =

∆nkn
t2

[t/kn∆n]−1∑
i=0

(
1− 2ρ̂2

ikn+1 + ρ̂4
ikn+1

)
. (B.32)

Then, by Theorem 9.4.1 of Jacod and Protter (2012) and the same localization argument, we
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have

V̂ IRL
t

p→ 1

t2

∫ t

0

(1− 2ρ2
s + ρ4

s)ds.

C Proof of Lemma A2

For the (A.5), we can assume q ≥ 2 without loss of generality. The case with q ≥ 1 then
follows by Jensen’s inequality.

Each element of the term βi = Ĉi − C(i−1)∆n = κi + ηi + βi is a sum of the 10 types of
terms below, and each element of the term αi = κi + ηi is a sum of the first 9 types of terms
below,

(a) 1
kn∆n

A (1; 2, 3)ni − C̄12
(i−1)∆n

, 1
kn∆n

A(1; 2, 2)ni − C̄22
(i−1)∆n

, 1
kn∆n

A(1; 1, 1)ni − 1
kn∆n

Ā (0)ni ,

(b) 1
kn∆n

Ā (1;u)ni , u = 1, 2,

(c) 1
kn∆n

Ā (2;u, v)ni , u = 1, 2, v = 1, 2, also, Ā (3;u, v)ni , u = 1, 2, v = 1, 2,

(d) 1
kn∆n

A (1;u, v)ni , (u, v) = (1, 2) , (2, 1) , (1, 3) ,

(e) 1
kn∆n

A (2;u, v)ni for all (u, v) except (3, 3) ,

(f) 1
kn∆n

A (3;u, v)ni for all (u, v) except (3, 3) ,

(g) 1
kn∆n

A (4;u, v)ni for all (u, v) except (3, 3) ,

(h) 1
kn∆n

Z (u, 3)ni ,
1

kn∆n
Z (3, u)ni for u = 1, 2,

(i) 1
kn∆n

Z(u, v)ni for (u, v) = (1, 2) , (2, 1) , (1, 1) , (2, 2) ,

(j) β
lm

i , l = 1, 2,m = 1, 2.

Therefore, to prove (A.4) it is sufficient to show that for each of the terms above in (a)-(j),
the bound in (A.4) holds. Similarly, to prove (A.5) it is sufficient to show that for each of the
terms above in (a)-(i), the bound in (A.5) holds. For most of the terms (all except cases (h)
and (i)) we will in fact establish a tighter bound than in (A.4). These tighter bounds will be
useful for the proof of Lemma A3.

(a) By (A.16), (A.17), (A.18), and (A.20), we have∣∣∣∣Ei−1
1

kn∆n

A (1; 2, 3)ni − C̄
12
(i−1)∆n

∣∣∣∣ ≤ K∆1/2
n ,

Ei−1

∣∣∣∣ 1

kn∆n

A (1; 2, 3)ni − C̄
12
(i−1)∆n

∣∣∣∣q ≤ K
(
∆q/2
n + k−q/2n

)
.

The proof for the second term in (a) is similar. As to the third term, note that by (A.10),∣∣∣∣Ei−1

(
1

kn∆n

A (1; 1, 1)ni −
1

kn∆n

Ā (0)ni

)∣∣∣∣
=

1

l2n

1

kn∆n

kn−1∑
s=0

∣∣∣Ei−1

((
ζ (1)ni+s

)2 − 2
(
c(i+s−1)∆n

)2
)∣∣∣ ≤ K

1

l2n

1

kn∆n

kn
√

∆n ≤ K∆1/2
n .

51



In addition, we have

Ei−1

∣∣∣∣ 1

kn∆n

A (1; 1, 1)ni −
1

kn∆n

Ā (0)ni

∣∣∣∣q
≤ K

(
1

kn∆n

)q
l−2q
n Ei−1

∣∣∣∣∣
kn−1∑
s=0

[
Ei+s−1

(
ζ (1)ni+s

)2 − 2
(
c(i+s−1)∆n

)2
]∣∣∣∣∣
q

+K

(
1

kn∆n

)q
l−2q
n Ei−1

∣∣∣∣∣
kn−1∑
s=0

[(
ζ (1)ni+s

)2 − Ei+s−1

(
ζ (1)ni+s

)2
]∣∣∣∣∣
q

≤ K

(
1

kn∆n

)q
l−2q
n kqn∆q/2

n +K

(
1

kn∆n

)q
l−2q
n kq/2−1

n

kn−1∑
s=0

Ei−1

∣∣ζ (1)ni+s
∣∣2q

+K

(
1

kn∆n

)q
l−2q
n kq/2−1

n

kn−1∑
s=0

Ei−1

∣∣∣Ei+s−1

(
ζ (1)ni+s

)2
∣∣∣q

≤ Kl−2q
n ∆−q/2n +K∆−qn l−2q

n k−q/2n

≤ Kk−q/2n ≤ K (kn∆n)q/2 .

In above, the second inequality follows by Burkholder-Gundy inequality and (A.10), and the
third inequality follows by (A.7).

(b) Rewrite Ā (1;u)ni as follows,

Ā (1;u)ni =
12

l3n

ln−1∑
m=0

kn−1∑
j=0

c(i+j−1)∆n ε̄ (u)nm ζ (u)ni+j+m

=
12

l3n

kn+ln−2∑
s=0

(kn−1)∧s∑
j=0∨(s−ln+1)

c(i+j−1)∆n ε̄ (u)ns−j ζ (u)ni+s

=
12

l3n

kn+ln−2∑
s=0

ai,sζ (u)ni+s ,

where ai,s =
∑(kn−1)∧s

j=0∨(s−ln+1) c(i+j−1)∆n ε̄ (u)ns−j. By (A.6) and (A.8), we have

∣∣Ei−1

(
Ā (1;u)ni

)∣∣ ≤ Kl−3
n ln

kn+ln−2∑
s=0

sup |ε̄ (u)n|
∣∣Ei−1ζ(u)ni+s

∣∣ ≤ Kl−2
n kn∆1/2

n ,

hence it follows that ∣∣∣∣Ei−1

(
1

kn∆n

Ā (1;u)ni

)∣∣∣∣ ≤ Kl−1
n .
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Moreover, by (A.24),

Ei−1

∣∣Ā (1;u)ni
∣∣q =

(
12

l3n

)q
Ei−1

∣∣∣∣∣
kn−1∑
s=0

ai,sζ (u)ni+s

∣∣∣∣∣
q

≤

{
Kl−2q

n k
q/2
n if u = 1

Kl−qn k
−q/2
n if u = 2

.

Hence,

Ei−1

∣∣∣∣ 1

kn∆n

Ā (1;u)ni

∣∣∣∣q ≤
{
Kk

−q/2
n if u = 1

Kk
−3q/2
n ∆

−q/2
n if u = 2

.

(c) The first term, by Hölder and Cauchy-Schwartz inequalities and (A.7) and (A.9), can be
bounded by

Ei−1

∣∣Ā (2;u, v)ni
∣∣q ≤ kq−1

n sup
s,j

∣∣∣γ̄ (u, v; 0)ns,j

∣∣∣q kn+ln−2∑
j=1

√
Ei−1

∣∣∣ζ (u)ni+j

∣∣∣2q√Ei−1

∣∣∣ζ (v)ni+j

∣∣∣2q,
which is bounded by Kkqn∆

3q/2
n for every (u, v) = (1, 2) , (2, 1) , (2, 2) , (1, 1). Hence,∣∣∣∣Ei−1

(
1

kn∆n

Ā (2;u, v)ni

)∣∣∣∣ ≤ K∆1/2
n .

As to Ā(3;u, v)ni , we have∣∣∣∣∣∣Ei−1

(ln−1)∧j∑
m=1

γ̄ (u, v;m)nj−kn+1,j ζ (u)ni+j−m ζ (v)ni+j

∣∣∣∣∣∣
≤

(ln−1)∧j∑
m=1

γ̄ (u, v;m)nj−kn+1,j

√
Ei−1

(
ζ (u)ni+j−m

)2
√

Ei−1

(
ζ ′ (v)ni+j

)2

,

which is bounded by K∆
3/2
n . Therefore, we have∣∣∣∣Ei−1

(
1

kn∆n

Ā (2;u, v)ni

)∣∣∣∣ ≤ K∆1/2
n .

Moreover, note that by (A.24),

Ei−1

∣∣∣∣∣∣
(ln−1)∧j∑
m=1

γ (u, v;m)nj−kn+1,j ζ (u)ni+j−m

∣∣∣∣∣∣
q

≤

{
Kl
−3q/2
n if v = 2

Kl
−5q/2
n if v = 1

.
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Therefore, we can obtain

Ei−1

∣∣Ā (3;u, v)ni
∣∣q ≤ Kkq−1

n

kn+ln−2∑
j=1

Ei−1

∣∣∣∣∣∣
(ln−1)∧j∑
m=1

γ (u, v;m)nj−kn+1,j ζ (u)ni+j−m

∣∣∣∣∣∣
q

Ei+j−1

∣∣∣ζ (v)ni+j

∣∣∣q


which is bounded by Kkqn∆
5q/4
n for every (u, v) = (1, 2) , (2, 1) , (2, 2) , (1, 1). The first inequal-

ity follows by the Hölder inequality; the final bound by (A.7) and (A.9) and the result just
above. Hence, for j = 1, 2 and (u, v) = (1, 2) , (2, 1) , (2, 2) , (1, 1),

Ei−1

∣∣∣∣ 1

kn∆n

Ā (j;u, v)ni

∣∣∣∣q ≤ K∆q/4
n ≤ K (kn∆n)q/2 .

(d) Here we look at the term A (1;u, v)ni , say for (u, v) = (1, 2). We have

Ei−1 |A (1; 1, 2)ni |
q ≤ Kl−2q

n kq−1
n

kn−1∑
s=0

√
Ei−1

∣∣ζ (1)ni+s
∣∣2q√Ei−1

∣∣ζ (2)ni+s
∣∣2q ≤ Kl−2q

n kqn∆q/2
n ,

by the Hölder and Cauchy-Schwartz inequalities, (A.7), and (A.9). Hence,

Ei−1

∣∣∣∣ 1

kn∆n

A (1; 1, 2)ni

∣∣∣∣q ≤ K∆q/2
n .

A similar argument shows the result for (u, v) = (2, 1) and (1, 3) . This also establishes that∣∣∣∣Ei−1

(
1

kn∆n

A (1; 1, 2)ni

)∣∣∣∣ ≤ K∆1/2
n .

(e) To prove (A.3), notice that for s = 0, ..., 2ln − 1,

γ (u, v; 0)ns−kn+1,s+1 + γ (u, v; 0)ns+1,s+kn+1 = ynu,v

s∑
q=0

ε(u)nq ε(v)nq + ynu,v

2ln−1∑
q=s+1

ε (u)nq ε (v)nq = Γ (u, v)ni .

Therefore, we can rewrite A (2;u, v)ni as

A (2;u, v)ni =
2ln−1∑
s=0

(
γ (u, v; 0)ns+1,s+kn+1 − Γ (u, v)n0

) (
ζ (u)ni+s+kn ζ (v)ni+s+kn − ζ (u)ni+s ζ (v)ni+s

)
.

By (A.10), (A.11), and (A.12), we have∣∣Ei−1

(
ζ (u)ni+s+kn ζ (v)ni+s+kn − ζ (u)ni+s ζ (v)ni+s

)∣∣
≤
∣∣Ei−1

(
ζ (u)ni+s+kn ζ (v)ni+s+kn − z

n
u,v∆nV (u, v)ni+s+kn

)∣∣+ znu,v∆n

∣∣Ei−1

(
V (u, v)ni+s+kn − V (u, v)ni+s

)∣∣
+
∣∣Ei−1

(
ζ (u)ni+s ζ (v)ni+s − z

n
u,v∆nV (u, v)ni+s

)∣∣
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≤


Kkn∆2

n, if (u, v) = (2, 2) , (2, 3) , (3, 2)
K∆n, if (u, v) = (1, 2) , (2, 1) , (1, 3) , (3, 1)
Kkn∆n, if (u, v) = (1, 1)

.

Therefore, we have∣∣∣∣Ei−1

(
1

kn∆n

A (2;u, v)ni

)∣∣∣∣
≤ 1

kn∆n

2ln−1∑
s=0

∣∣∣γ (u, v; 0)ns+1,s+kn+1 − Γ (u, v)n0

∣∣∣ ∣∣Ei−1

(
ζ (u)ni+s+kn ζ (v)ni+s+kn − ζ (u)ni+s ζ (v)ni+s

)∣∣
≤ K∆1/2

n .

Now we prove (A.4) and (A.5). Decompose A (2;u, v)ni into five parts arising from writing

ζ (u)ni+s+kn ζ (v)ni+s+kn − ζ (u)ni+s ζ (v)ni+s

=
[
ζ (u)ni+s+kn ζ (v)ni+s+kn − Ei+s+knζ (u)ni+s+kn ζ (v)ni+s+kn

]
−
[
ζ (u)ni+s ζ (v)ni+s − Ei+s−1ζ (u)ni+s ζ (v)ni+s

]
+
[
Ei+s+knζ (u)ni+s+kn ζ (v)ni+s+kn − z

n
u,v∆nV (u, v)ni+s+kn

]
−
[
Ei+s−1ζ (u)ni+s ζ (v)ni+s − z

n
u,v∆nV (u, v)ni+s

]
+ znu,v∆nV (u, v)ni+s+kn − z

n
u,v∆nV (u, v)ni+s .

The first component ofA (2;u, v)ni satisfies, by the Burkholder-Gundy, Hölder, Cauchy-Schwartz
inequalities and (A.25), (A.7) and (A.9)

Ei−1

∣∣∣∣∣
2ln−1∑
s=0

(
γ (u, v; 0)ns+1,s+kn+1 − Γ (u, v)n0

) (
ζ (u)ni+s+kn ζ (v)ni+s+kn − Ei+s+knζ (u)ni+s+kn ζ (v)ni+s+kn

)∣∣∣∣∣
q

≤ lq/2−1
n

2ln−1∑
s=0

∣∣∣γ (u, v; 0)ns+1,s+kn+1 − Γ (u, v)n0

∣∣∣q√Ei−1

∣∣ζ (u)ni+s+kn
∣∣2q√Ei−1

∣∣ζ (v)ni+s+kn
∣∣2q,

which is bounded by K∆
3q/4
n for every (u, v). Second component of A (2;u, v)ni is very similar.

The third satisfies, by Hölder inequality, (A.10), (A.11), and (A.12),

Ei−1

∣∣∣∣∣
2ln−1∑
s=0

(
γ (u, v; 0)ns+1,s+kn+1 − Γ (u, v)n0

) (
Ei+s−1ζ (u)ni+s ζ (v)ni+s − z

n
u,vV (u, v)ni+s

)∣∣∣∣∣
q

≤ Klq−1
n

2ln−1∑
s=0

∣∣∣γ (u, v; 0)ns+1,s+kn+1 − Γ (u, v)n0

∣∣∣q Ei−1

(∣∣(Ei+s−1ζ (u)ni+s ζ (v)ni+s − z
n
u,vV (u, v)ni+s

)∣∣q) ,
which is bounded by K∆q

n. The fourth term is similar. The fifth and final component of
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A (2;u, v)ni satisfies, by the Hölder inequality and (A.25),

Ei−1

∣∣∣∣∣
2ln−1∑
s=0

(
γ (u, v; 0)ns+1,s+kn+1 − Γ (u, v)n0

) (
znu,v∆nV (u, v)ni+s+kn − z

n
u,v∆nV (u, v)ni+s

)∣∣∣∣∣
q

≤ lq−1
n

2ln−1∑
s=0

∣∣∣γ (u, v; 0)ns+1,s+kn+1 − Γ (u, v)n0

∣∣∣q ∣∣znu,v∆n

∣∣q Ei−1

∣∣V (u, v)ni+s+kn − V (u, v)ni+s
∣∣q ,

which is bounded by K∆
q/2
n for every (u, v). Therefore,

Ei−1

∣∣∣∣ 1

kn∆n

A (2;u, v)ni

∣∣∣∣q ≤ K
(
k−2
n ∆−1

n

)q/2
.

(f) We rewrite A (3;u, v)ni as follows,

A (3;u, v)ni =
kn+2ln−2∑

s=0

η (i, s) ζ (v)ni+s =
2ln−2∑
s=0

η (i, s) ζ (v)ni+s +
kn+2ln−2∑
s=kn

η (i, s) ζ (v)ni+s , (C.33)

where η (i, s) =
∑(2ln−1)∧s

m=1 γ (u, v;m)ns−kn+1,s+1 ζ (u)ni+s−m − 1{s≥2ln−1}ρ (u, v)ni+s . Note that
η (i, s) is Fi+s−1-measurable. We will use the fact that by (A.7), (A.9), and (A.24), we have
for all q ≥ 2 and all s,

Ei−1

∣∣∣∣∣∣
(2ln−1)∧s∑

m=1

γ (u, v;m)ns−kn+1,s+1 ζ (u)ni+s−m

∣∣∣∣∣∣
q

≤


Kl
−q/2
n if (u, v) = (2, 2) , (3, 2) , (2, 3)

K (l−1
n )

q
l
q/2
n if (u, v) = (1, 2) , (1, 3)

K (l−1
n )

q
l
−q/2
n if (u, v) = (2, 1) , (3, 1)

K (l−2
n )

q
l
q/2
n if (u, v) = (1, 1)

=

{
Kl
−q/2
n if v = 2, 3

Kl
−3q/2
n if v = 1

,

which implies

Ei−1 |η (i, s)|q ≤

{
Kl
−q/2
n if v = 2, 3

Kl
−3q/2
n if v = 1

. (C.34)

We first prove (A.3). By (C.34), (A.6) and (A.8), the first part of A (3;u, v)ni satisfies∣∣∣∣∣Ei−1

(
2ln−2∑
s=0

η (i, s) ζ (v)ni+s

)∣∣∣∣∣ ≤ K

2ln−2∑
s=0

√
Ei−1 (η (i, s))2

√
Ei−1

(
ζ ′ (v)ni+s

)2 ≤ K∆1/2
n .

The same steps can be used for the second part of A (3;u, v)ni . Therefore,∣∣∣∣Ei−1

(
1

kn∆n

A (3;u, v)ni

)∣∣∣∣ ≤ Kk−1
n ∆−1/4

n ≤ Kkn∆n.
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We now prove (A.4) and (A.5). The first part of A (3;u, v)ni satisfies, by the Burkholder-
Gundy inequality, (A.6)-(A.9) and (C.34),

Ei−1

∣∣∣∣∣
2ln−2∑
s=0

η (i, s) ζ (v)ni+s

∣∣∣∣∣
q

≤ K

2ln−2∑
s=0

Ei−1

(
|η (i, s)|q

(
lq−1
n

∣∣ζ ′ (v)ni+s
∣∣q + lq/2−1

n

∣∣ζ ′′ (v)ni+s
∣∣q)) ,

which is bounded by ≤ K∆
q/2
n . The same steps apply to the second part of A (3;u, v)ni . Hence,

Ei−1

∣∣∣ 1
kn∆n

A (3;u, v)ni

∣∣∣q ≤ K (k−2
n ∆−1

n )
q/2
.

(g) First, consider v = 1. By (A.6) and (A.25), we have∣∣∣∣ 1

kn∆n

Ei−1A (4;u, 1)ni

∣∣∣∣ ≤ 1

kn∆n

kn+2ln−2∑
s=2ln−1

Ei−1

[∣∣ρ (u, 1)i+s
∣∣Ei−1

∣∣ζ ′ (1)ni+s
∣∣]

≤ K

kn∆n

knl
−3/2
n ∆1/2

n

(
∆1/2
n + Ei−1η

n
i+s

)
≤ K∆3/4

n +K∆1/4
n ηni,2kn .

Moreover, by Hölder inequality, (A.6), and (A.25) again, we have

Ei−1 |A (4;u, 1)ni |
q ≤ kq−1

n

kn+2ln−2∑
s=2ln−1

Ei−1

[∣∣ρ (u, 1)i+s
∣∣q Ei+s−1

∣∣ζ ′ (1)ni+s
∣∣q] ≤ Kkqn∆5q/4

n .

Next, consider v = 2, 3. Introduce the notation V (2) = b(c) and V (3) = b. First notice that

|Ei−1A (4;u, v)ni | ≤

∣∣∣∣∣Ei−1

kn+2ln−2∑
s=2ln−1

ρ (u, v)i+s

(
ζ ′ (v)ni+s − V (v)(i+s−2ln)∆n

∆n

)∣∣∣∣∣
+

∣∣∣∣∣Ei−1

kn+2ln−2∑
s=2ln−1

ρ (u, v)i+s V (v)(i+s−2ln)∆n
∆n

∣∣∣∣∣ .
On the one hand, we have∣∣∣∣∣Ei−1

kn+2ln−2∑
s=2ln−1

ρ (u, v)i+s

(
ζ ′ (v)ni+s − V (v)(i+s−2ln)∆n

∆n

)∣∣∣∣∣
≤

kn+2ln−2∑
s=2ln−1

√
Ei−1

∣∣ρ (u, v)i+s
∣∣2√Ei−1

∣∣∣ζ ′ (v)ni+s − V (v)(i+s−2ln)∆n
∆n

∣∣∣2 ≤ Kkn∆5/4
n ηni,2kn ,

since by (A.8), (A.22), and (A.23),

Ei−1

(∣∣∣ζ ′ (v)ni+s − V (v)(i+s−2ln)∆n
∆n

∣∣∣2)
≤KEi−1

(∣∣∣ζ ′ (v)ni+s − V (v)(i+s−1)∆n
∆n

∣∣∣2)+K∆2
nEi−1

(∣∣∣V (v)(i+s−1)∆n
− V (v)(i+s−2ln)∆n

∣∣∣2)
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≤Ei−1

[
∆n

(√
∆n + ηni+s

)]2

+K∆2
n

(
ηni,2kn

)2 ≤ K∆2
n

(
ηni,2kn

)2
.

On the other hand, by Cauchy-Schwartz inequality, (A.7), and (A.9),∣∣∣∣∣Ei−1

kn+2ln−2∑
s=2ln−1

ρ (u, v)i+s V (v)(i+s−2ln)∆n
∆n

∣∣∣∣∣
≤∆n

kn+2ln−2∑
s=2ln−1

2ln−1∑
m=1

sup
s
|V (v)s|

√
Ei−1 |Γ(u, v)nm|

2
√

Ei−1

∣∣ζ ′(u)ni+s−m
∣∣2 ≤ Kkn∆3/2

n .

Therefore, we obtain

1

kn∆n

|Ei−1A (4;u, v)ni | ≤
K

kn∆n

(
kn∆5/4

n ηni,2kn + kn∆3/2
n

)
= K∆1/4

n ηni,2kn +K∆1/2
n .

To prove (A.4)-(A.5), we have, by Hölder inequality, (A.6), and (A.25),

Ei−1 |A (4;u, v)ni |
q ≤ kq−1

n

kn+2ln−2∑
s=2ln−1

Ei−1

[∣∣ρ (u, v)i+s
∣∣q Ei+s−1

∣∣ζ ′ (v)ni+s
∣∣q] ≤ Kkqn∆5q/4

n .

We conclude that for v = 1, 2, and 3, Ei−1

∣∣∣ 1
kn∆n

A (4;u, v)ni

∣∣∣q ≤ K∆
q/4
n .

(h) The first statement, (A.3), is trivial for any pair of u and v:

Ei−1Z (u, v)ni = Ei−1

kn+2ln−2∑
j=2ln−1

2ln−1∑
m=1

Γ(u, v)nmζ(u)ni+j−mζ
′′ (v)ni+j = 0.

To prove (A.4)-(A.5), we start with the term Z (u, 3)ni for u = 1, 2. We have

Ei−1 |Z (u, 3)ni |
q ≤KEi−1

∣∣∣∣∣
kn+2ln−2∑
j=2ln−1

(
ρ (u, 3)i+j ζ

′′ (3)ni+j

)2

∣∣∣∣∣
q/2

≤Kk
q
2
−1

n

kn+2ln−2∑
j=2ln−1

Ei−1

[(
ρ (u, 3)i+j

)q
Ei+j−1

((
ζ (3)ni+j

)q
+
(
ζ ′ (3)ni+j

)q)]
≤Kk

q
2
n l
−q/2
n ∆q/2

n +Kk
q
2
n l
−q/2
n ∆q

n.

The first inequality follows by the Burkholder-Gundy inequality, second by Hölder inequality,

and last by (A.8), (A.9), and (A.25). Therefore, Ei−1

∣∣∣ 1
kn∆n

Z (u, 3)ni

∣∣∣q ≤ K
(
k−1
n ∆

−1/2
n

)q/2
.

Next term is Z (3, u)ni for u = 1, 2. Similar to the above, Ei−1 |Z (3, u)ni |
q

is bounded by

Kk
q
2
−1

n

kn+2ln−2∑
j=2ln−1

Ei−1

[(
ρ (3, u)i+j

)q
Ei+j−1

((
ζ (u)ni+j

)q
+
(
ζ ′ (u)ni+j

)q)]
,
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which is bounded by K
(
kn∆

3/2
n

)q/2
. Therefore, Ei−1

∣∣∣ 1
kn∆n

Z (3, u)ni

∣∣∣q ≤ K
(
k−1
n ∆

−1/2
n

)q/2
.

(i) We only need to prove (A.4)-(A.5) regarding Z(u, v)ni when (u, v) = (1, 2). We have

Ei−1 |Z (1, 2)ni |
q ≤ Kk

q
2
−1

n

kn+2ln−2∑
j=2ln−1

Ei−1

[(
ρ (1, 2)i+j

)q
Ei+j−1

(
ζ (2)ni+j

)q]

+Kk
q
2
−1

n

kn+2ln−2∑
j=2ln−1

Ei−1

[(
ρ (1, 2)i+j

)q
Ei+j−1

(
ζ ′ (2)ni+j

)q]
≤ Kk

q
2
n l
−q/2
n ∆q/2

n +Kk
q
2
n l
−q/2
n ∆q

n ≤ K
(
kn∆3/2

n

)q/2
.

In above the first inequality follows by Hölder inequality, the second by (A.8), (A.9), and

(A.25). Hence, we obtain Ei−1

∣∣∣ 1
kn∆n

Z (1, 2)ni

∣∣∣q ≤ K
(
k−1
n ∆

−1/2
n

)q/2
. Similar arguments give

the result for Z(u, v)ni when (u, v) = (2, 1) , (1, 1), and (2, 2).
(j) By (A.16) and (A.17), we have

Ei−1

∣∣∣βlmi ∣∣∣q = Ei−1

∣∣∣∣∣ 1

kn

kn−1∑
s=0

C lm
(i+s−1)∆n

− C lm
(i−1)∆n

∣∣∣∣∣
q

≤ K (kn∆n)q/2 +Kkn∆n,∣∣∣Ei−1

(
β
lm

i

)∣∣∣ ≤ Kkn∆n.

D Proof of Lemma A3

As in Lemma A2, we can decompose each of βjli and βkmi for all (j, l) and (k,m), into 10
parts, respectively, denoted as (a)-(j) in Lemma A2. An inspection of the proof of Lemma
A2, for q = 2, shows that the cross-products of almost all terms are bounded by Kkn∆n.
There are three exceptions. First, the cross-products between terms in (f) and (h) − (i)
(i.e., the terms in (D.36) below). Second, the cross-products between terms in (j) and (h)−
(i) (i.e., the terms in (D.37) below). Third, product of terms in (h) − (i), consisting of
Z (u, v)ni Z (u′, v′)ni for all u, v, u′, v′ = 1, 2, 3. These latter terms exactly correspond to the

contributions of ηjli towards βjli for each (j, l). These are the terms that will absorb the

centering above k−1
n ∆

−1/2
n h

(
j, k; l,m;C(i−1)∆n

)
. Therefore, by the proof of Lemma A2 and

the Cauchy-Schwartz inequality, it is sufficient to prove the following three results, for all
(u, v, u′, v′) and (j, l),∣∣∣Ei−1

(
ηjli η

km
i − k−1

n ∆−1/2
n h

(
j, k; l,m;C(i−1)∆n

))∣∣∣ ≤ Kkn∆n, (D.35)∣∣∣∣Ei−1

(
1

kn∆n

A (3;u, v)ni
1

kn∆n

Z (u′, v′)
n
i

)∣∣∣∣ ≤ Kkn∆n, (D.36)∣∣∣∣Ei−1

(
β
jl

i

1

kn∆n

Z (u′, v′)
n
i

)∣∣∣∣ ≤ Kkn∆n. (D.37)
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We start by showing (D.35). By the definition of ηjli , we know that

ηjki η
lm
i =



∑
(u,v)∈A

∑
(u′,v′)∈A

1
k2
n∆2

n
Z (u, v)ni Z (u′, v′)ni if (j, k, l,m) = (1, 2, 1, 2) , (1, 2, 2, 1) ,

(2, 1, 1, 2) , (2, 1, 2, 1)∑
(u,v)∈A

∑
(u′,v′)∈B

1
k2
n∆2

n
Z (u, v)ni Z (u′, v′)ni if (j, k, l,m) = (1, 2, 2, 2) , (2, 1, 2, 2) ,

(2, 2, 1, 2) , (2, 2, 2, 1)∑
(u,v)∈B

∑
(u′,v′)∈B

1
k2
n∆2

n
Z (u, v)ni Z (u′, v′)ni if (j, k, l,m) = (2, 2, 2, 2) .

0 otherwise

,

where A = {(1, 3) , (2, 3) , (3, 1) , (3, 2)} , B = {(1, 1) , (1, 2) , (2, 1) , (2, 2)}. Therefore, by com-
paring it with the definition of h in equation (A.1), to prove that∣∣∣Ei−1

(
ηjli η

km
i − k−1

n ∆−1/2
n h

(
j, k; l,m;C(i−1)∆n

))∣∣∣ ≤ Kkn∆n

for every (j, l, k,m), it is sufficient to prove that∣∣Ei−1

[
Gn
i − k−1

n ∆−1/2
n l

(
u, v;u′, v′;C(i−1)∆n

)]∣∣ ≤ Kkn∆n

for every (u, v, u′, v′), where

Gn
i =

(
1

kn∆n

Z (u, v)ni

)(
1

kn∆n

Z (u′, v′)
n
i

)
.

We prove this below. We have

Ei−1

[
Gn
i − k−1

n ∆−1/2
n l

(
u, v;u′, v′;C(i−1)∆n

)]
= Ei−1

[
G(1)
n − k−1

n ∆−1/2
n l

(
u, v;u′, v′;C(i−1)∆n

)]
,

where

G(1)
n =

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

(
ρ (u, v)i+j ζ

′′ (v)ni+j

)(
ρ (u′, v′)i+j ζ

′′ (v′)
n
i+j

)
,

which follows because Ei+j−1ζ
′′ (v′)ni+j = 0. Next, define

Gn =

[(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

ρ (u, v)i+j ρ (u′, v′)i+j ∆nz
n
v,v′V (v, v′)i+j − k−1

n ∆−1/2
n l

(
u, v;u′, v′;C(i−1)∆n

)]
.

It suffices to show the bound with Gn instead of G
(1)
n since

∣∣∣Ei−1

(
G

(1)
n −Gn

)∣∣∣ is bounded by

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

∣∣∣Ei−1ρ (u, v)i+j ρ (u′, v′)i+j Ei+j−1

[
ζ ′′ (v)ni+j ζ

′′ (v′)
n
i+j −∆nz

n
v,v′V (v, v′)i+j

]∣∣∣ ,
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which is bounded by Kk−1
n by (A.10)–(A.15), and (A.25) Next, define

G
′n
t,i =

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

ρ (u, v)i+j ρ (u′, v′)i+j ∆nz
n
v,v′V (v, v′)i+j−2ln−k−1

n ∆−1/2
n l

(
u, v;u′, v′;C(i−1)∆n

)
.

It suffices to show the bound with G
′n
t,i instead of Gn since

∣∣∣Ei−1

(
Gn −G

′n
t,i

)∣∣∣ is bounded by

∆nz
n
v,v′

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

√
Ei−1

(
ρ (u, v)i+j ρ (u′, v′)i+j

)2
√

Ei−1 (V (v, v′)i+j − V (v, v′)i+j−2ln)2,

by the Cauchy-Schwartz inequality, which is in turn bounded by Kk−1
n using (A.25) and the

standard estimates of Itô semimartingales applied to each value of the pair (v, v′). Next,

decompose G
′n
t,i = Ĝ (1)i + Ĝ (2)i + Ĝ (3)i where

Ĝ (1)i =

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

2ln−1∑
m=1

Γ(u, v)nmΓ(u′, v′)nmζ(u)ni+j−mζ(u′)ni+j−m∆nz
n
v,v′Vi+j−2ln ,

Ĝ (2)i =

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

2ln−1∑
m=1

Γ(u, v)nmζ(u)ni+j−m
∑
m′>m

Γ(u′, v′)nm′ζ(u′)ni+j−m′∆nz
n
v,v′Vi+j−2ln ,

Ĝ (3)i =

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

2ln−1∑
m=1

Γ(u, v)nmζ(u)ni+j−m
∑
m′<m

Γ(u′, v′)nm′ζ(u′)ni+j−m′∆nz
n
v,v′V (v, v′)i+j−2ln .

First, define ξi+j =
∑2ln−1

m=1 Γ(u, v)nmV (v, v′)i+j−2ln

∑
m′>m Γ(u′, v′)nm′ζ(u′)ni+j−m′ , so that

Ei−1Ĝ (2)i = ∆nz
n
v,v′

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

Ei−1ξi+jEi+j−m−1ζ(u)ni+j−m.

We have

Ei−1

(∣∣ξi+j∣∣) ≤ 2ln−1∑
m=1

Ei−1 |Γ(u, v)nmV (v, v′)i+j−2ln|

∣∣∣∣∣ ∑
m′>m

Γ(u′, v′)nm′ζ(u′)ni+j−m′

∣∣∣∣∣

≤



Kl
−5/2
n if (u, v) = (1, 1) and v′ = 1

Kl
−3/2
n if (u, v) = (1, 1) and v′ = 2, 3

Kl
−3/2
n if (u, v) = (1, 2) , (2, 1) , (1, 3) , (3, 1) and v′ = 1

Kl
−1/2
n if (u, v) = (1, 2) , (2, 1) , (1, 3) , (3, 1) and v′ = 2, 3

Kl
−1/2
n if (u, v) = (2, 3) , (3, 2) , (2, 2) and v′ = 1

Kl
1/2
n if (u, v) = (2, 3) , (3, 2) , (2, 2) and v′ = 2, 3

,

by applying (A.7) and (A.9) to each possibility of (u, v) and v′. Together with (A.6), (A.8),

and (A.24), we have
∣∣∣Ei−1Ĝ (2)i

∣∣∣ ≤ K∆
−1/4
n k−1

n . The bound for
∣∣∣Ei−1Ĝ (3)i

∣∣∣ is the same by
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similarity of Ĝ (2)i to Ĝ (3)i. Therefore, to show the bound for G
′n
t,i, it is sufficient to show the

bound for Ĝ (1)i. We decompose it as Ĝ (1)i = Ĝ′′ + Ĝ′, where

Ĝ′′ =

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

2ln−1∑
m=1

Γ(u, v)nmΓ(u′, v′)nm

×
[
ζ(u)ni+j−mζ(u′)ni+j−m − V (u, u′)i+j−m∆nz

n
u,u′

]
∆nz

n
v,v′V (v, v′)i+j−2ln ,

Ĝ′ =

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

2ln−1∑
m=1

Γ(u, v)nmΓ(u′, v′)nm ×
[
V (u, u′)i+j−m∆nz

n
u,u′

]
∆nz

n
v,v′V (v, v′)i+j−2ln .

We have ∣∣∣Ei−1Ĝ
′′
∣∣∣ ≤4

(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

2ln−1∑
m=1

Γ(u, v)nmΓ(u′, v′)nm∆nz
n
v,v′V (v, v′)i+j−2ln

×
∣∣Ei−1

[
ζ(u)ni+j−mζ(u′)ni+j−m − V (u, u′)i+j−m∆nz

n
u,u′

]∣∣ ≤ Kk−1
n ,

by applying (A.10)– (A.15) to each value of (u, v, u′, v′). It remains to show the bound

for
∣∣∣Ei−1Ĝ

′
i

∣∣∣. Define Ĝi =
(

1
kn∆n

)2∑kn+2ln−2
j=2ln−1 H (u, v;u′, v′)n ∆2

nV (u, u′)i−1V (v, v′)i−1. It is

sufficient to show
∣∣∣Ei−1Ĝi − k−1

n ∆
−1/2
n l

(
u, v;u′, v′;C(i−1)∆n

)∣∣∣ ≤ Kkn∆n because

∣∣∣Ei−1

(
Ĝi − Ĝ′i

)∣∣∣ =

∣∣∣∣∣Ei−1

[(
1

kn∆n

)2 kn+2ln−2∑
j=2ln−1

H (u, v;u′, v′)n ∆2
n

[
V (u, u′)i+j−m V (v, v′)i+j−2ln

−V (u, u′)i−1Vi−1(v, v′)]]| ≤ Kk−1
n ∆−1/4

n ,

using the standard estimates because V (v, v′)sV (u, u′)s is an Itô semimartingale. Before con-
tinuing, note that l

(
u, v;u′v′;C(i−1)∆n

)
satisfies

l (u, v;u′v′;Cs) = Vi−1(v, v′)V (u, u′)i−1 lim
n→∞

[
H (u, v;u′, v′;Cs)n ∆1/2

n

]
,

and we can easily verify∣∣∣Ei−1

[
H (u, v;u′, v′)n ∆1/2

n − lim
n→∞

(H (u, v;u′, v′)n ∆1/2
n )
]∣∣∣ ≤ K∆1/2

n .

Therefore,∣∣∣Ei−1Ĝi − k−1
n ∆−1/2

n l
(
u, v;u′, v′;C(i−1)∆n

)∣∣∣
=
∣∣k−1
n ∆−1/2

n H (u, v;u′, v′)n ∆1/2
n V (u, u′)i−1V (v, v′)i−1 − k−1

n ∆−1/2
n l

(
u, v;u′, v′;C(i−1)∆n

)∣∣
+Kk−2

n ∆−1/2
n ln ≤ K∆1/2

n +Kk−2
n ∆−1/2

n ln ≤ Kkn∆n.

This completes the proof of (D.35).
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We now prove (D.36). Note that the expectation of the cross-term between Z (u, v)ni and
the first part of A (3;u, v)ni in (C.33) is zero, by the law of iterated expectations. Therefore, to
prove (D.36), we need to obtain a bound for the cross term between Z (u, v)ni and the second
part of A (3;u, v)ni in (C.33), which is

Ei−1

(
Z (u, v)ni

kn+2ln−2∑
s=kn

η (i, s) ζ (v)ni+s

)

= Ei−1

(
kn+2ln−2∑
j=2ln−1

ρ (u, v)i+j ζ
′′ (v)ni+j

kn+2ln−2∑
s=kn

(−η (i+ kn, s− kn)) ζ (v)ni+s

)

= Ei−1

(
kn+2ln−2∑
s=kn

s−1∑
j=2ln−1

ξ (s, j)ni

)
+ Ei−1

(
kn+2ln−2∑
s=kn

ξ (s, s)ni

)
, (D.38)

where first equality follows by the fact that for any s = kn, ..., kn + 2ln− 2, η (i+ kn, s− kn) +
η (i, s) = 0, and where ξ (s, j)ni = −ρ (u, v)i+j η (i+ kn, s− kn) ζ ′′ (v)ni+j ζ (v)ni+s, which clearly
satisfies Ei−1ξ (s, j)ni = 0 whenever j > s. The first part in (D.38) satisfies∣∣∣∣∣Ei−1

(
kn+2ln−2∑
s=kn

s−1∑
j=2ln−1

ξ (s, j)ni

)∣∣∣∣∣
≤ K

kn+2ln−2∑
s=kn

√√√√ s−1∑
j=2ln−1

Ei−1

(∣∣∣ρ (u, v)i+j

∣∣∣2 ∣∣∣ζ ′′ (v)ni+j

∣∣∣2)√Ei−1

(
|η (i+ kn, s− kn)|2

∣∣ζ ′ (v)ni+s
∣∣2)

≤

{
Kln
√
knl
−3/2
n × 1× l−3/2

n ∆
1/2
n if v = 1

Kln
√
knl
−1/2
n ×∆

1/2
n × l−1/2

n ∆n if v = 2, 3
≤ K

√
kn∆3/2

n . (D.39)

The first inequality follows by the law of iterated expectations and Burkholder-Gundy in-
equality, second by (A.6)-(A.9), (C.34), and (A.25). We next show that the bound for the
second part in (D.38) satisfies∣∣∣∣∣Ei−1

(
kn+2ln−2∑
s=kn

ξ (s, s)ni

)∣∣∣∣∣ ≤ K∆n. (D.40)

We have∣∣∣∣∣Ei−1

(
kn+2ln−2∑
s=kn

ξ (s, s)ni

)∣∣∣∣∣ (D.41)

≤

∣∣∣∣∣Ei−1

kn+2ln−2∑
s=kn

ρ (u, v)i+s η (i+ kn, s− kn)
(
ζ ′′ (v)ni+s ζ

′′ (v)ni+s − z
n
v,v∆nV (v, v)ni+s

)∣∣∣∣∣
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+

∣∣∣∣∣Ei−1

kn+2ln−2∑
s=kn

ρ (u, v)i+s η (i+ kn, s− kn) znv,v∆n

(
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)∣∣∣∣∣
+

∣∣∣∣∣Ei−1

kn+2ln−2∑
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∣∣∣∣∣ .
The first term in (D.41) is smaller or equal than

kn+2ln−2∑
s=kn

Ei−1

(∣∣ρ (u, v)i+s
∣∣ |η (i+ kn, s− kn)|

∣∣Ei+s−1

(
ζ ′′ (v)ni+s ζ

′′ (v)ni+s − z
n
v,v∆nV (v, v)ni+s

)∣∣) ,
which is bounded by K∆

3/2
n . The second term in (D.41) is smaller or equal than

znv,v∆n

kn+2ln−2∑
s=kn

(
Ei−1

∣∣ρ (u, v)i+s
∣∣4) 1

4 (
Ei−1 |η (i+ kn, s− kn)|4

) 1
4

(
Ei−1

∣∣V (v, v)ni+s − V (v, v)ni+s−2ln

∣∣2) 1
2

≤

 K∆nkn

(
l
−1/2
n

)2√
ln∆n if v = 2, 3

Kkn

(
l
−3/2
n

)2√
ln∆n if v = 1

≤ K∆7/4
n kn.

For the third term in (D.41), we first obtain the bound, for s = kn, ..., kn + 2ln − 2∣∣Ei+s−2ln

(
ρ (u, v)i+s η (i+ kn, s− kn)

)∣∣
=

∣∣∣∣∣∣Ei+s−2ln

2ln−1∑
q=1
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(2ln−1)∧(s−kn)∑
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≤
{
K
√

∆n if v = 2, 3

K∆
3/2
n if v = 1

.

The last equality follows by considering separately the terms with m = q, m > q, and m < q.
For the m = q terms, one uses (A.10)–(A.15). For the m > q terms, one first uses the
law of iterated expectations to replace ζ (u)ni+s−m by ζ ′ (u)ni+s−m; the final bound follows by
(A.6)-(A.9). Similar steps apply to the m < q terms. Therefore, the third term in (D.41)
satisfies ∣∣∣∣∣Ei−1

kn+2ln−2∑
s=kn

ρ (u, v)i+s η (i+ kn, s− kn) znv,v∆nV (v, v)ni+s−2ln
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≤ znv,v∆n

kn+2ln−2∑
s=kn

sup
s
|Vs|Ei−1

∣∣Ei+s−2lnρ (u, v)i+s η (i+ kn, s− kn)
∣∣ ,

which is bounded by ≤ K∆n. This concludes the proof of (D.40), and together with (D.39),
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we find ∣∣∣∣Ei−1

(
1

kn∆n

A (3;u, v)ni
1

kn∆n

Z (u′, v′)
n
i

)∣∣∣∣ ≤ Kk−2
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n ≤ Kkn∆n.

This concludes the proof of (D.36). We now prove (D.37). For any (j, l),
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=
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≤ 1
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kn−1∑
q=2ln−1
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≤

{
K∆nkn (kn × l−3
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1/2

if v = 1

K∆nkn (kn × l−1
n ×∆n)

1/2
if v = 2, 3

≤ K∆7/4
n k3/2

n .

Second transition follows by the fact that summands with i + s + 2ln − 1 > i + s + 2ln − 1
are zero by the law of iterated expectations. Third transition follows by the Burkholder-
Gundy inequality and standard estimates for Itô Semimartingales. Fourth transition follows
by (A.25), (A.7), and (A.9). Therefore, for any (u, v) and any (j, l),∣∣∣∣Ei−1

(
β
jl

i

1

kn∆n

Z (u, v)ni

)∣∣∣∣ ≤ K∆3/4
n k1/2

n ≤ Kkn∆n.

This concludes the proof of (D.36) and hence the lemma.
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