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Abstract

This paper introduces an econometric framework for analyzing cross-sectional dependence
in the idiosyncratic volatilities of assets using high frequency data. We first consider the estima-
tion of standard measures of dependence in the idiosyncratic volatilities such as covariances and
correlations. Naive estimators of these measures are biased due to the use of the error-laden
estimates of idiosyncratic volatilities. We provide bias-corrected estimators and the relevant
asymptotic theory. Next, we introduce an idiosyncratic volatility factor model, in which we
decompose the variation in idiosyncratic volatilities into two parts: the variation related to the
systematic factors such as the market volatility, and the residual variation. Again, naive estima-
tors of the decomposition are biased, and we provide bias-corrected estimators. We also provide
the asymptotic theory that allows us to test whether the residual (non-systematic) components
of the idiosyncratic volatilities exhibit cross-sectional dependence. We apply our methodology
to the S&P 100 index constituents, and document strong cross-sectional dependence in their
idiosyncratic volatilities. We consider two different sets of idiosyncratic volatility factors, and
find that neither can fully account for the cross-sectional dependence in idiosyncratic volatil-
ities. For each model, we map out the network of dependencies in residual (non-systematic)

idiosyncratic volatilities across all stocks.
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1 Introduction

In a panel of assets, returns are generally cross-sectionally dependent. This dependence is usually
modeled using the exposure of assets to some common return factors, such as the Fama-French fac-
tors. In this Return Factor Model (R-FM), the total volatility of an asset return can be decomposed
into two parts: a component due to the exposure to the common return factors (the systematic
volatility), and a residual component termed the Idiosyncratic Volatility (IdioVol). These two
components of the volatility of returns are the most popular measures of the systematic risk and
idiosyncratic risk of an asset.

Idiosyncratic Volatility is important in economics and finance for several reasons. For example,
when arbitrageurs exploit the mispricing of an individual asset, they are exposed to the idiosyn-
cratic risk of the asset and not the systematic risk (see, e.g., Campbell, Lettau, Malkiel, and Xu
(2001)).1 Also, Idiosyncratic Volatility measures the exposure to the idiosyncratic risk in imper-
fectly diversified portfolios. The cross-sectional dependence in IdioVols is also important for option
pricing, see Gourier (2016). The attention to IdioVols in empirical finance literature is exemplified
by two IdioVol puzzles, see Campbell, Lettau, Malkiel, and Xu (2001) and Ang, Hodrick, Xing,
and Zhang (2006). A recent observation is that the IdioVols seem to be strongly correlated in the
cross-section of stocks.? We propose methods to formally study this empirical phenomenon with
high-frequency data, while fully accounting for the measurement errors in IdioVols.

This paper provides an econometric framework for studying the cross-sectional dependence
in the Idiosyncratic Volatilities using high frequency data. The analysis is based on a new gen-
eral asymptotic theory that we develop for estimators of quadratic covariations between nonlinear
functions of spot volatility matrices. We show that naive estimators, such as covariances and cor-
relations, are biased. The bias arises due to the use of error-laden estimates of the spot volatility
matrices. We provide the bias-corrected estimators. We derive the asymptotic distribution of these
estimators, and propose consistent estimators of the asymptotic variances. We apply this new

asymptotic theory to construct tests of dependence between IdioVols and map out the network of

LAn asset is said to be mispriced with respect to a given model if the expected value of the return on the asset is
not consistent with the model.

2See, e.g., Connor, Korajczyk, and Linton (2006), Duarte, Kamara, Siegel, and Sun (2014), Herskovic, Kelly,
Lustig, and Nieuwerburgh (2016), and Christoffersen, Fournier, and Jacobs (2018).



dependencies in IdioVols in a panel of assets.

To study Idiosyncratic Volatilities, we introduce the Idiosyncratic Volatility Factor Model
(IdioVol-FM). Just like a Return Factor Model, R-FM, such as the Fama-French model, decomposes
returns into common and idiosyncratic returns, the IdioVol-FM decomposes the IdioVols into sys-
tematic and residual (non-systematic) components. The IdioVol factors may or may not be related
to the return factors. The IdioVol factors can include the volatility of the return factors, or, more
generally, (possibly non-linear) transformations of the spot covariance matrices of any observable
variables, such as the average variance and average correlation factors of Chen and Petkova (2012).
We propose bias-corrected estimators of the components of the IdioVol-FM model.

We provide the asymptotic theory for this model. For example, it allows us to test whether
the residual (non-systematic) components of the IdioVols exhibit cross-sectional dependence. This
allows us to identify the network of dependencies in the residual IdioVols across stocks.

Reduced-form analysis of total and idiosyncratic volatilities can be useful to inform the formu-
lation of structural asset pricing models. For example, Herskovic, Kelly, Lustig, and Nieuwerburgh
(2016) document strong dependence in firm IdioVols, and propose an incomplete markets asset pric-
ing model, where IdioVol behavior is explained by the idiosyncratic risk faced by households. When
documenting the cross-sectional dependence in IdioVol, Herskovic, Kelly, Lustig, and Nieuwerburgh
(2016) estimate several volatility factor models, for example, they regress IdioVols on average firm
volatilities, where the IdioVols are defined with respect to the market return factor or the Fama-
French factors. Our framework can be used to estimate high-frequency regressions with these
variables, on a fixed time interval, while fully capturing the effect of the measurement error from
the preliminary estimation of both the dependent variable and the factor.

Throughout the paper, we use factors that are specified by the researcher. An example of our
Return Factor Model is the so-called Fama-French factor model, which has three observable factors,
or the CAPM, which has one observable factor (the market portfolio return). An example of our
IdioVol factors is the market volatility, which can be estimated from the market index. Thus, our
setup is different from settings such as PCA where factors are identified from the cross-section of
the assets studied. The treatment of the latter case adds an additional layer of complexity to the

model and is beyond the scope of the current paper.



We apply our methodology to high-frequency data on the S&P 100 index constituents. We
study the IdioVols with respect to two models for asset returns: the CAPM and the three-factor
Fama-French model.? In both cases, the average pairwise correlation between the IdioVols is high
(0.35). We verify that this dependence cannot be explained by the missing return factors. This
confirms the recent findings of Herskovic, Kelly, Lustig, and Nieuwerburgh (2016) who use low
frequency (daily and monthly) return data. We then consider the IdioVol-FM. We use two sets of
IdioVol factors: the market volatility alone and the market volatility together with volatilities of
nine industry ETFs. With the market volatility as the only IdioVol factor, the average pairwise
correlation between residual (non-systematic) IdioVols is substantially lower (0.21) than between the
total IdioVols. With the additional industry ETF volatilities as IdioVol factors, average correlation
between the residual IdioVols decreases further (to 0.17). However, neither of the two sets of the
IdioVol factors can fully explain the cross-sectional dependence in the IdioVols. For each model,
we map out the network of dependencies in residual IdioVols across all stocks.

This paper analyzes cross-sectional dependence in Idiosyncratic Volatilities. This should not
be confused with the analysis of cross-sectional dependence in total and idiosyncratic returns. A
growing number of papers study the latter question using high frequency data. These date back
to the analysis of realized covariances and their transformations, see, e.g., Barndorff-Nielsen and
Shephard (2004) and Andersen, Bollerslev, Diebold, and Wu (2006). A continuous-time factor
model for asset returns with observable return factors was first studied in Mykland and Zhang
(2006). Various return factor models with observable factors have been studied by, among others,
Bollerslev and Todorov (2010), Fan, Furger, and Xiu (2016), Li, Todorov, and Tauchen (2017a,b),
and Ait-Sahalia, Kalnina, and Xiu (2020). Emerging literature also studies the cross-sectional
dependence in returns using high-frequency data and latent return factors, see Ait-Sahalia and Xiu
(2019, 2017) and Pelger (2019, 2020). Importantly, the models in the above papers are silent on
the cross-sectional dependence structure in the IdioVols.

While this paper focuses on the study of cross-sectional dependence of IdioVols, our new asymp-
totic theory can be used in various other applications. For example, we can estimate dependence

measures, in the form of co-volatilities or the corresponding correlations, between the time-varying

3The high frequency Fama-French factors are provided by Ait-Sahalia, Kalnina, and Xiu (2020).



asset betas.* While it is well-known that asset betas vary over time in practice, there is no consensus
as to what common factors drive this variation, so accurate dependence measures of asset beta co-
movement can be helpful. Another example is the estimation of dependence measures between total
volatilities or systematic volatilities of asset returns. In addition, we can estimate high-frequency
regressions of one element of a spot volatility matrix on other elements, such as regression of the
asset volatility on market volatility. Finally, we can estimate high-frequency regressions of total
asset volatility on average asset volatility, which mirrors one more of the specifications considered
in Herskovic, Kelly, Lustig, and Nieuwerburgh (2016), in addition to the specifications described
earlier.

Our inference theory is related to several estimators in the existing literature. The closest are
the volatility of volatility estimator of Vetter (2015) and one of the asymptotic bias estimators of
Jacod and Rosenbaum (2015). Vetter (2015) proposes an estimator of volatility of volatility of
the returns of one asset, and derives the relevant theory for inference.” We extend the analysis to
the multivariate case with nonlinear transformations, return jumps, and volatility jumps. While
Jacod and Rosenbaum (2015) focus on a different problem, one of the asymptotic bias terms in
their paper coincides with our quantity of interest in a special case, see Section 3.1 for details. The
setting in Jacod and Rosenbaum (2015) is multivariate and robust to return and volatility jumps,
but they only establish consistency of the relevant estimator, and do not provide any asymptotic
distribution theory. In contrast, we derive the asymptotic distribution, as well as the consistency
of the estimator of the asymptotic variance. See also Li, Liu, and Zhang (2022) who extend the
results in Vetter (2015) to allow for price jumps and market microstructure noise. They do not
consider the multivariate case, nonlinear transformations, or volatility jumps. Finally, Chong and
Todorov (2024) propose nonparametric estimators of the volatility of volatility and leverage effect
using high-frequency data on short-dated options.

Jacod and Rosenbaum (2013, 2015), Li, Todorov, and Tauchen (2016) and Li, Liu, and Xiu
(2019) estimate integrated functionals of volatilities, which includes Idiosyncratic Volatilities. The

latter problem is simpler than the problem of the current paper in the sense that /n-consistent

“Here, asset betas are the loadings of asset returns on return factors; these are distinct from the asset volatility
betas that we describe in the next section.

This estimator is also studied in Ait-Sahalia and Jacod (2014) (Section 8.3) under similar assumptions to Vetter
(2015). Ait-Sahalia and Jacod (2014) cite 2011 working paper version of Vetter (2015).



estimation is possible, and the estimators are consistent without a bias correction (see Section
3.1 for details). In the literature on the estimation of the leverage effect, preliminary estimation
of volatility also creates a bias, which also needs to be corrected to achieve consistency, see Ait-
Sahalia, Fan, and Li (2013), Ait-Sahalia, Fan, Laeven, Wang, and Yang (2017), Kalnina and Xiu
(2017) and Wang and Mykland (2014).

One of the reasons why we can account for the measurement error from preliminary estimation
of volatilities is the fact that our framework only uses one (in-fill) asymptotic approximation.
It is interesting to contrast this approach with the analysis of two-step estimators using joint
in-fill and long-span asymptotics, see, e.g., Corradi and Distaso (2006), Todorov (2009), Bandi
and Reno (2012), Kanaya and Kristensen (2016), and Li and Patton (2018). In these double
asymptotic settings, the inference methods for the second step typically do not depend on the
first-step measurement error. This provides a good approximation as long as the number of high-
frequency observations in every low-frequency period is large enough. A notable early exception
is Bollerslev and Zhou (2002) who use a simple parametric model for the first-step measurement
error.

The Realized Beta GARCH model of Hansen, Lunde, and Voev (2014) imposes a structure on
the cross-sectional dependence in IdioVols. This structure is tightly linked with the Return Factor
Model parameters, whereas our stochastic volatility framework allows separate specification of the
return factors and the IdioVol factors.®

In the empirical section, we define a network of dependencies using (functions of) quadratic
covariations of IdioVols. This approach can be compared with the network connectedness measures
of Diebold and Yilmaz (2014). The latter measures are based on forecast error variance decom-
positions from vector autoregressions. They capture co-movements in forecast errors. In contrast,
we assume a general semimartingale setting, and our framework captures realized co-movements in
Idiosyncratic Volatilities, while accounting for the measurement errors in these volatilities.

The remainder of the paper is organized as follows. Section 2 introduces the model and the
quantities of interest. Section 3 describes the identification and estimation. Section 4 presents the

asymptotic properties of our estimators. Section 5 uses high-frequency stock return data to study

5In the Beta GARCH model, the IdioVol of a stock is a product of its own (total) volatility, and one minus the
square of the correlation between the stock return and the market return.



the cross-sectional dependence in IdioVols using our framework. Section 6 contains Monte Carlo

simulations. The Online Supplementary Appendix contains all proofs and additional figures.

2 Model and Quantities of Interest

We first describe a general Factor Model for the Returns (R-FM), which allows us to define the
Idiosyncratic Volatility. We then introduce the Idiosyncratic Volatility Factor Model (IdioVol-FM).
In this framework, we proceed to define the cross-sectional measures of dependence between the
total IdioVols, as well as the residual IdioVols, which take into account the dependence induced by
the IdioVol factors.

Suppose we have (log) prices on dg assets such as stocks, S; = (Slyt,...,SdS,t)T, and on
dp observable factors, Fy = (Fig,... ,FdF’t)T. We stack them into the d-dimensional process
Y = (Sits---Sagt, Fis - - ,FdF,t)T where d = dg + dp. The observable factors F1,..., Fy, are

used in the R-FM model below. We assume that all observable variables jointly follow an Itd

semimartingale, i.e., Y; follows
t t
Ke:l/()+/bsds~|—/odes+JtY, (1)
0 0

where W is a d"-dimensional Brownian motion (dW >d), Cy = O’tUtT is the spot covariance process,
and .J)" denotes a finite variation jump process. The spot covariance matrix process Cy of Y; is a

continuous Itd6 semimartingale,”
t ¢
C,=0Cy +/ bsds + / osdWs + J7. (2)
0 0

We refer to the (Cy), , element of the matrix Cy as Cgp . For convenience, we also use the alternative
notation Cyv, to refer to the spot covariance between two elements U and V' of Y, and Cp; to
refer to Cyys.

We assume a standard continuous-time factor model for the asset returns.

"Note that assuming that ¥ and C' are driven by the same d"-dimensional Brownian motion W is without loss
of generality provided that dV is large enough, see, e.g., equation (8.12) of Ait-Sahalia and Jacod (2014).



Definition (Factor Model for Returns, R-FM). For all 0 <t <T andj=1,...,dg,®

dS;¢ = BILAFS + B, dFf +dZ;,  with
(3)
(Z;, F]; = 0.

In the above, dZ;; is the idiosyncratic return of stock j. The superscripts ¢ and d indicate the
continuous and jump part of the processes, so that 3;, and Bj,t are the continuous and jump factor
loadings. For example, the k-th component of ;, corresponds to the time-varying loading of the
continuous part of the return on stock j to the continuous part of the return on the k-th factor.
We set By = (B14---,Bagys) | and Zy = (Z1g,. .., Zaga)

We do not need the return factors F; to be the same across assets to identify the model, but
without loss of generality, we keep this structure as it is standard in empirical finance. These
return factors are assumed to be observable, which is also standard. For example, in the empirical
application, we use two sets of return factors: the market portfolio and the three Fama-French
factors, which are constructed in Ait-Sahalia, Kalnina, and Xiu (2020).

A continuous-time factor model for returns with observable factors was originally studied in
Mykland and Zhang (2006) in the case of one factor and in the absence of jumps. A burgeoning
literature uses related models to study the cross-sectional dependence of total and/or idiosyncratic
returns. However, this literature does not consider the cross-sectional dependence in the IdioVols.

We define the idiosyncratic Volatility (IdioVol) to be the spot volatility of Z;; and denote it
by Cz;:. Notice that R-FM in (3) implies that the factor loadings /3; as well as the IdioVols are

functions of the total spot covariance matrix Cy. In particular, the vector of factor loadings satisfies

Bjr = (Cry) ' Crsjt, (4)

for j =1,...,ds, where Cr; denotes the spot covariance matrix of the factors F', which is the lower

dr x dp sub-matrix of Cy; and Crg;; denotes the covariance of the factors and the 4t stock, which

8Quadratic covariation of two vector-valued It6 semimartingales X and Y, over the time span [0, 7], is defined as
M-1

[X,Y]r = p-lim Z (th+1 - th)(Y;fs+1 - Yts)—ra

M — o0 s—0

for any to < t1 < ... <ty =T with sup; |ts+1 — ts|] = 0 as M — oo.

Intuitively, quadratic covariation can be thought of as the integrated covariance between the increments dX; and dY;.



is a vector consisting of the last dp elements of the j* column of Cy. The IdioVol of stock j is then

also a function of the total spot covariance matrix CY,

T -1

Czjr = Cyijt — (Crsjt) (Crt)” Crsjt- (5)
~—~— ——

IdioVol of stock j total volatility of stock j

By the It6 lemma, (4) and (5) imply that factor loadings and IdioVols are also Itd6 semimartingales
with characteristics that are functions of Cy.

We now introduce the Idiosyncratic Volatility Factor model (IdioVol-FM). In IdioVol-FM, the
cross-sectional dependence in the IdioVol shocks can be potentially explained by certain IdioVol
factors we denote as II;. A simple example of IdioVol factor is the market volatility. Our model
allows IdioVol factors to be any given smooth functions of the matrix C;; we discuss examples

below.

Definition (Idiosyncratic Volatility Factor Model, IdioVol-FM). For all0 < t < T and

Jj=1,...,dg, the Idiosyncratic Volatility Cz; follows,

dCzje = 3dI +75;dI¢ + dOYSe with (6)

Cym = o,
where Iy = (I, ..., Hgy) is a R _yalued vector of Idio Vol factors. IdioVol factors satisfy
M = I (Cy) (7)

with the function I (-) being three times continuously differentiable for k =1,..., dy.

II(-) is a smooth function of C;. For example, often II(Cy) is Cpy, i.e., I (+) selects the compo-
nents of Cy that correspond to the volatilities of the observable factors F;. More generally, 11, may
also include the volatilities and covolatilities of other assets beyond F;. Even more generally, our
theory permits a rather wide class of IdioVol factors, since it includes general non-linear transforms
of the spot covariance matrix process C;. For example, IdioVol factors can be linear combinations
of the total volatilities of assets, see, e.g., the average variance factor of Chen and Petkova (2012).

Another example is the common IdioVol factor, or “CIV”, which is studied in Herskovic, Kelly,



Lustig, and Nieuwerburgh (2016). CIV is defined as the cross-sectional average of the firm IdioVols
from CAPM. The IdioVol factors can also be the volatilities of any other observable processes.

We call the residual term C’gejffd in the IdioVol-FM the residual IdioVol of asset j. Our assump-
tions imply that the components of the IdioVol-FM, Cz;,1I; and C’gejffd, are [to semimartingales.
We remark that both the dependent variable and the regressors in our IdioVol-FM are not directly
observable and have to be estimated, and our asymptotic theory takes that into account. As will
see in Section 3, this preliminary estimation implies that the naive estimators of all the dependence
measures defined below are biased. One of the contributions of this paper is to quantify this bias
and provide the bias-corrected estimators for all the quantities of interest.

Having specified our econometric framework, we now provide the definitions of some natural
measures of dependence of (the continuous parts of) the (total) IdioVols and the residual IdioVols.
We consider the estimation of these measures in Section 3.

Before studying the decomposition of the IdioVol-FM model, one may be interested in quan-
tifying the dependence between the (total) IdioVols of two stocks j and s. Quadratic covariation
[Czj,Czs]% is one natural measure of dependence between the (continuous parts of) the IdioVols
Czj and Czs. Another natural and scale invariant measure is the quadratic-covariation-based

correlation between the two IdioVol processes over a given time period [0, T,

[Czj, Czslt
\/[CZjv CZj]%\/[CZ& CZs]%

CO?‘T’ (CZj;CZs) = (8)

Correlation-based measure is more convenient for reporting the strength of dependence, while the
quadratic covariation [Cgzj, Czs|7 without normalization is more convenient for testing for the
presence of cross-sectional dependence in IdioVols. We consider such tests in Section 4.4.
Similarly, to measure the cross-sectional dependence between the residual IdioVols of two stocks,
after accounting for the effect of the IdioVol factors, we use the quadratic-covariation-based corre-

lation,
[Cgejsid7 C%cissid} %

resid resid]c resid resid]c )
JICgs, Csidle [iCgsid, csidyg

In Section 4.4, we use the quadratic covariation between the two residual IdioVol processes

Corr (C%Md, 2?“[) —

9)

[C%-Sid, Cre5d]e, without normalization for testing purposes.

10



We want to capture how well the IdioVol factors explain the time variation of IdioVols of the
jt" asset. For this purpose, we use the quadratic-covariation based analog of the coefficient of
determination. For j =1,...,dg,

T c
2 saiovorrn _ Yz Wiz

Ry 10
I [Cz;,Cz;l7 (10)

It is interesting to compare the correlation measure between IdioVols in equation (8) with the

correlation between the residual parts of IdioVols in (9). We consider their difference,
Corr (Czj,Czs) — Corr (C, €3 (11)

to see how much of the dependence between IdioVols can be attributed to the IdioVol factors.
In practice, if we compare assets that are known to have positive covolatilities (typically, stocks
have that property), another useful measure of the common part in the overall covariation between

IdioVols is the following quantity,

]

. _ 12
775 [Czj, Czsly (12

This measure is bounded by 1 if the covariations between residual IdioVols are nonnegative and
smaller than the covariations between IdioVols, which is what we find for every pair in our empirical
application with high-frequency observations on stock returns.

We remark that our framework can be compared with the following null hypothesis studied
in Li, Todorov, and Tauchen (2016), Hy : Czj+ = azj + 'ygjl'[t, 0 <t <T. This Hy implies
that the IdioVol is a deterministic function of the factors, which does not allow for an error term.

2,ldioVol-FM _

In particular, this null hypothesis implies Ry = 1. Our framework allows for testing

stochastic relationships, i.e., null hypotheses Hj : 'y}j = 0 in the presence of an error term.

11



3 Estimation

As we show below, the quantities of interest in Section 2 can be expressed in terms of the continuous

quadratic covariation between two functions of the spot covariance matrix Cf,
[H(C),G(O)]7- (13)

Section 3.1 proposes estimators of this general functional, and Section 3.2 explains how to use these

formulas to obtain estimators of the quantities of interest in Section 2.

3.1 Estimation of a General Functional

This section proposes estimators of the continuous quadratic covariation between two functions of
the spot covariance matrix [H(C), G(C)]5., where H and G are given real-valued smooth functions.
Recall that C; is the spot covariance matrix of the observable variables, see equations (1)-(2).
Suppose we have discrete observations on Y; over an interval [0,7]. Denote by A,, the distance
between observations. It is well known that we can estimate the spot covariance matrix Cy at time

(1 — 1)A,, with a local truncated realized volatility estimator,

kn—1
~ 1 < n n T
Cinn = 1A g_:o (AT Y) (ALmY) Lgan,, vi<un): (14)

where ATY = Y;a, — Y(;_1)a, and where kj, is the number of observations in a local window.? We
refer to the (6’m”>a , element of the matrix @An as @bymn.

If Cia,, was obser;fed and in the absence of volatility jumps, we could estimate [H (C), G(C)]r by
the realized covariance between G(Cja,, ) and H(C;a,, ), which is the sample analog of the definition

of [H(C),G(C)]r. However, we do not observe C;a, . If we replace it with @An in (14), we obtain

the plug-in estimator

— Naive 1 [T/ An)=2kn+1 ~ ~ ~ ~
HO.GO = Y (HChsra,) — HCa,)) (G(Chira,) — G(Cia,))

m i=1
(15)

°Tt is also possible to define more flexible kernel-based estimators as in Kristensen (2010).

12



However, it turns out that due to the measurement errors in Cja,,, this estimator is inconsistent.

C

We propose two estimators for the general quantity [H(C),G(C)]%. Our first estimator is a

bias-corrected sample analog of the definition of quadratic covariation between two Itd processes,

(T/An]—3kn+1
— AN 3 . ~ ~ ~
H(O).GO =5 Y ( (H(Clsran) — H(Cin,)) (G(Crirna,) — G(Cia,))
" i:kn“l‘l
d
2 . . . . .
i Z (Ogh HOapG)(Cin,,) (Cga,iAnChb,iAn + Cgb,iAnCha,iAn) )1{Aim,4¢+kn},
n g,h,a,b=1

(16)

where the indicator function should only be applied if we are concerned about volatility jumps,
and thus we want to truncate them. In the above, we denote by A; the event of not detecting a
volatility jump in the interval (iA,, (i + k) Ay], defined as A; = {Hé(iJrkn)An - é(i—kn)AnH <uh},
where u), is some threshold.

Our second estimator is based on the following equality, which follows by the It6 lemma,

d T
H(C),GO)5 = Y / (O HOwG) (CHYTI"dt, (17)

g,h,a,b=1
—gh,ab . .. e
where C? “” denotes the continuous covariation between the volatility processes Cyp and Cgp .
The quantity is thus a non-linear functional of the spot covariance and spot volatility of volatil-

ity matrices. Our second estimator is a bias-corrected version of the sample counterpart of the

“linearized” expression in (17),°

LN
[H(C), G(CO)]r
N O

= 0 (g HOwG) (Cia,,) ((agh,(i—i-kn)An = Cyn,ing ) (Cap (i) An — Cabiin,)

~ ~ ~

Fin ghab=1  i=kp+1
2 N N N
_?(Cga,iAnChb,iAn + Cgb,iAnCha,iAn)> LiainAi e, } (18)
n

We now provide the intuition for the bias terms. Suppose volatility is continuous. If we

had observations on Cja,,, the estimators of [H(C),G(C)]r would not need any bias-correction

10The computation time for any of our two estimators is increasing with the number of stocks and factors d. In
practice, we compute all the quantities of interest for pairs of stocks, so ds = 2 and thus d = dr + 2.

13



terms. It is useful to think of @An as an estimator of integrated volatility matrix, CA’ZA” =

knlAn i(itk"m" Csds+U;p,, , where U;a, is the estimation error. The first part of the bias-correction

in (16) and (18) is an additive term

[T/ An]—3kn+1 d
- Z < Z (OghH O G)(Cin,,) (Cga,iAnChb,iAn + Cgb,iAnCha,iAn>> - (19)

k2
n - _
i=kn+1 g,h,a,b=1

This term arises because of the estimation error U;a,. Intuitively, estimation of, e.g., variance
of functionals of C;a, by variance of functionals of @-An overestimates it due to the additional
variability of U;a, . In particular, one can show that the additive bias-correction term in (19) is, up
to a scale factor, an estimator of the asymptotic covariance between the estimators of fOT H(Cy)dt
and [ G(Cy)dt.

The second part of the bias-correction in (16) and (18) is the multiplicative correction factor 3/2.
This correction factor is needed because of a smoothing bias that arises due to the replacement
of Cia, by A%z fi(AiJ;k")A" Csds. To gain some intuition, consider the special case of d = 1 and
H () = G(-) = - . Suppose we had observations on A%L f.(Hk")A” Cyds. The i summand in the

iAn

naive estimator of [C, C]; would be

(i+2kn) A (i+kn)An 2 (i+kn) A 2
/ Cyds — / Ceds | = / (Csta,k, —Cs)ds | (20)
(i+kn)An iAp iA

n

divided by A2k3. Consider the weights that the integral fl.(itk"m” (Cs+a,k, —Cs)ds

puts on Ap-increments of the volatility Cy: these weights are triangular, i.e.,
(Apkn — |Apky, + 1A, — s|) I{s € [iAy, (i + 2ky) Ap]}. One can show that the squared
integral in (20) is proportional to the integral of the squared triangular weights,

@ 1k 7 i(j]z”H)A" (Apkn — |Ankn + 1A, — s|)2ds. The latter integral equals %, hence the

estimator needs a multiplicative correction factor %

When H(-) = G(-), the estimand is nonnegative, [H(C),G(C)]7 > 0, so our estimators are
nonnegative in large samples. However, due to the presence of an additive bias-correction, our
estimators are not guaranteed to be nonnegative in finite samples. We remark that Vetter (2015)

constructs a univariate volatility of volatility estimator that is guaranteed to be nonnegative, at
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the cost of a slower rate of convergence.

Our two estimators, AN in equation (16) and LIN in (18), are identical when H and G are linear,
for example, when estimating the covariation between two volatility processes. In the univariate
case d =1, when H(-) = G(-) = - , and when one assumes no price or volatility jumps and omits the
price and volatility jump truncation, both of our estimators coincide with the volatility of volatility
estimator of Vetter (2015).

While Jacod and Rosenbaum (2015) focus on a different problem, one of the asymptotic bias
terms in their paper is of the form [H(C), H(C)]7. In the special case H(-) = G(-), aside from a
scale factor, the end-effects, and the form of the volatility jump truncation, our LIN estimator in
equation (18) coincides with their estimator. Our approach to volatility jumps differs as we truncate
these jump from below, while Jacod and Rosenbaum (2015) truncate from above, and we use a
simpler form of truncation that in finite samples is robust to consecutive volatility jumps. Jacod
and Rosenbaum (2015) only establish consistency of the relevant estimator, and do not provide any
asymptotic distribution theory. In contrast, we derive the asymptotic distribution of the estimators

of [H(C),G(C)]7, and provide a consistent estimator of the asymptotic variance.

3.2 Estimation in R-FM and IdioVol-FM models

In this section, we explain how to use the formulas in equations (16) and (18) to obtain estimators
for the objects of interest in Section 2, see equations (6)—(12). In particular, each of these objects

of interest,

[CZjv CZS]’_%U Corr (CZj7 CZS) ) ’YZjv [Cgejsid’ Cgisid]%?

‘ (21)
Corr (02381d7 Cgesszd) ’ %,()ZZOZ_FMa and R%jdzo Vol-FM’
for j,s =1,...,dg, can be written as
2 ([Hl(C)v Gi (C)]% Y [HH(C)’ GH(C)]%) ) (22)
for some smooth, real-valued functions ¢, H,, G,, r = 1,..., k. Each element in (22) is of the form

[H,(C),G,(C)]%, i.e., it is the continuous part of a quadratic covariation between functions of Cy,
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and hence can be estimated using the estimators proposed in Section 3.1.
Consider the first quantity in equation (21), which is the continuous part of the quadratic
covariation between j** and s* IdioVol, [Czj,Czs]7. By equation (5), Cz = Cyqy —

(Cpsg’t)T(CF’t)_ICFSg’t, and the quantity is of the form [CZj, CZS]% = [H (Ct) ,G (Ct)]%, where

H(C,) = OCyji— (Crsjt) (Cri) 'Crsju

G(C)) = Cyst— (Crsst) (Cry) 'Crssy.

As per equation (8), Corr (Cz;,Cyzs) is also of the form of equation (22).

Next, note that IdioVol-FM implies

vz; = (L) I, Cgl7,  and (23)
(O3, CH 7 =[Oz, Ozl — 7251 TGy 2, (24)
for j,s =1,...,ds. Recall that Cz;;, Czs, and every element of II; are given real-valued functions

of C;. For example, if volatility factors are the volatilities of return factors Fy, we have II (Cy) = Cy,
so IT(+) selects the last dp diagonal elements from C; (recall that F} are the last dp elements of
vector Y;). Thus, the right-hand-sides of (23) and (24) have the form of equation (22) for a finite
number of quantities of the form [H,(C), G,(C)l5.

Finally, the remaining quantities in equation (21), Corr (C%-Sid, Cgessid), QIZC?"ZZOZ'F M and
R2dioVol-FM

7 , are smooth functions of [C}'E.Sid, geJ»Sid]CT, [Czj, Czs]7, V75, and [, 1], each of which

is of the form of equation (22), and hence are themselves of the form of equation (22).

4 Asymptotic Properties

In this section, we first present the full list of assumptions for our asymptotic results. We then obtain
the joint asymptotic distribution between the general functionals [H,(C), G,(C)|} forr=1,...,k
introduced in Section 3.1. We also develop estimators for the asymptotic variance-covariance ma-
trix. The asymptotic distributions of the estimators of Corr (Cz;,Cz;) and other quantities of

interest in Section 2 follow by the Delta method (see Section 3.2 for details). Finally, to illustrate
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the application of the general theory, we describe three statistical tests about the IdioVols, which

we later implement in the empirical and Monte Carlo analysis.

4.1 Assumptions

Recall that the d-dimensional process Y; represents the (log) prices of stocks, S, and factors Fj.

Assumption 1. Suppose Y is an Ité semimartingale on a filtered space (2, F, (Ft)e>0,P),

t t t
Y; =Y, +/ beds +/ o dWy + / / d(s, z)p(ds,dz), (25)
0 0 0o JE

where W is a dV -dimensional Brownian motion (A" > d) and p is a Poisson random measure on
Ry x E, with E an auziliary Polish space with intensity measure v(dt,dz) = dt @ A\(dz) for some o-
finite measure A on E. The process by is R*-valued optional, oy is RY x R4™ -valued, and § = 6(w, t, )
is a predictable R? -valued function on Q x Ry x E. Moreover, ||§(w,t A Tp(w), 2)|| A1 < Thu(2),
for all (w,t,z), where (Ty,) is a localizing sequence of stopping times and, for some r € [0,1/2), the
function Ty, on E satisfies [ T'm(2)"A(dz) < oo. The spot volatility matriz of Y is then defined as

Cy = ata:. We assume that C; is an Ité semimartingale,™*
t t
Cy =Cy +/ bsds +/ osdWs + J7, (26)
0 0

where b is RY x R -valued optional, and J{ is a finite activity jump process. Cy takes values in the
space My consisting of d X d positive definite matrices. For a sequence of convex compact subsets

(Km)m>1 of Mg, Cy € Ky, for all t < 1p,.

With the above notation, the elements of the spot volatility of volatility matrix and spot co-

variation of the continuous martingale parts of X and c are defined as follows,

av av

—~gh,ab ~gh,m~abm ~9,ab gm~ab,m

O = g ol o, 0, Cf = E ol o, . (27)
m=1 m=1

We assume the following for the process o;:

"Note that & = (5§h‘m) is (d x d x d")-dimensional and GsdW; is (d x d)-dimensional with (GsdW;)?" =
S Fmawr,

m=1Ys

17



Assumption 2. 7; is a continuous It6 semimartingale with its characteristics satisfying the same

requirements as that of Cy — J7.

Assumption 1 is very general and nests most of the multivariate continuous-time models used in
economics and finance. It allows for potential stochastic volatility and jumps in returns. Assump-
tion 2 is required to obtain the asymptotic distribution of estimators of the quadratic covariation
between functionals of the spot covariance matrix C;. It is not needed to prove consistency. This

assumption also appears in Wang and Mykland (2014), Vetter (2015), and Kalnina and Xiu (2017).

4.2 Asymptotic Distribution

We have seen in Section 3 that all quantities of interest in (21) are functions of multiple objects of
the form [H(C),G(C)]|7. Therefore, if we can obtain a multivariate asymptotic distribution for a
vector with elements of the form [H(C), G(C)]%, the asymptotic distributions for all our estimators
follow by the Delta method. The current section presents this asymptotic distribution.

Let H1,G1,. .., Hg, Gx be given smooth real-valued functions. We are interested in the asymp-

totic behavior of vectors

s AN — ANNT
(I1:(C),GuO) - [H(C), GalC)) ) am

— LIN — LINN\ T (28)
(IO, GI(O5 - [HA(C),Gal )l )

The following theorem summarizes the joint asymptotic behavior of the estimators.

— AN — LIN

Theorem 1. Let [HT(CTCTT(C)]% denote either [H,(C),Gr(C)]S  or [H.(C),Gr(C)]% de-
fined in equations (16) and (18), where H, and G, are three times differentiable real-valued func-

tions, forr =1,..., k. Suppose Assumptions 1 and 2 hold. Fix k, = 9A;1/2 for some 0 € (0, 00).

Set u, < AT with ig/_‘tg <w< 3, andul, < AT with0 < @' < min (3 —r,1). Then, as A, — 0,

—

[H1(C), G1(O)]g = [H1(C), G1 (O)]7

L% MN(0,27). (29)
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Let 377 be the (27), , element of the k x k matriz Xp. We have

8

Z;S — ETvsv(l) + ET’S»(Z) + E’I’,S,(g)’

Z Z / Oy 0 GOt Ho Oy G (C')) [Ct(gh, 7k)Cy(ab, Im)
g,h,a,b=1 j,k,l,m=1
+ Cu(ab, jK)Cilgh, Im)] at,

d

s 1519 T——
nre@ = 3 Z / g Hy 0y GrOj1 Hy O Gis (C1)) [cgh”’“c -
g,h a,b=1 j,k,l,;m=1

4 6?b,jk6i]h,lm] dt,
3 d d T "
Ep = *9 Z Z / Ogh Hr 0ap G Ot Hs Oy G 5 (Ct)) [Ct(gh jk)Cy™

Jk

+ Cilab, tm)CY" " + Cilgh, Im)T " + Cy(ab, jR)CT ™ |t

with

Ci(gh, jk) = Cy; iChit + CgitChijs-

The convergence in Theorem 1 is stable in law (denoted L-s, see for example Aldous and
Eagleson (1978) and Jacod and Protter (2012)). The limit is mixed gaussian and the precision of
the estimators depends on the paths of the spot covariance and the volatility of volatility process.
The rate of convergence A,, 1/4 has been shown to be the optimal for volatility of volatility estimation
(in the absence of volatility jumps).

The asymptotic variance of the estimators depends on the tuning parameter § whose choice
may be crucial for the reliability of the inference. We document the sensitivity of the inference

theory to the choice of the parameter 6 in a Monte Carlo experiment (see Section 6).

4.3 Estimation of the Asymptotic Covariance Matrix

To provide a consistent estimator for the element X7° of the asymptotic covariance matrix in

Theorem 1, we introduce the following quantities:

d  [T/An]—5kn+1

W = A, Z > Y (0 H0wG 0 H,0mG(Cia,) )
g,h,a,b=1 j,k,l,m=1 i=kn+1
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x [@-An(gh, jk)Cia, (ab,tm) + Cia, (b, jk)Cia, (ghy1m)| 1 4

=0 i+jkn’
d  [T/An]—5kn+1

~ 1 ~n,gh~n,jk~n,ab l
Z > >, <8thr8abG78ijsf)szs(Cmn)) [2/\?9 A N Aok
g,h,a,b=1 j,k,l,m=1 i=kn+1

1 ~n,abon,lm-n,gh ~n,jk 1~n,abon,jk~n,gh ~n,m 1 ~n,gh~n,lm-~n,ab n,jk
toA A Nitate, N2k, + oA AT Ak Ao, T gA A A, )‘z+2kn:| 1ns_ Asijin
3 d [T/ An]—5kn+1
Ors:(3) _ ~
S ) Z > (O H 0G0k H 0 Gi(Cin,) )

g,h,a,b=1 j,k,l,m=1 i=kn+1
~n,ab~n,Im n,gh~n,jk

[Cmn(gh GRS N 4 Cin, (aby m) Ay TN,

7

~n,ab~n,jk ~n,gh~n,lm

+Cin, (gh, M)A N + (Cia, (ab, jE)N N ]lﬂ?=oAi+g‘kn'

’]k s 13 -~ N ik~ . ~ -~ o~ A~ ~
with )x = fjkn—cf] , Cin, (gh, jk) = Cyjinn Chk,in, +Cgk,in, Chjin, » and A = {HC(iJrkn)An_

Clicyan |l < ul}.

The following result holds,

Theorem 2. Suppose the assumptions of Theorem 1 hold. Then, as A, — 0,

063 are B, wra), (30)
3 QT,S,(S) 6§T757(1) P ZT,S,(?’) d 31
@[ TgT ] — Zp7, an (31)
1510 9 =rs,(2) ars()  4ars@)) P s, (2)

Q. Q ’ Q7 — X 2
o 32 T 3 r (32)

The estimated matrix fJT is symmetric but is not guaranteed to be positive semi-definite. By
Theorem 1, f]T is positive semi-definite in large samples. An interesting question is the estimation
of the asymptotic variance using subsampling or bootstrap methods, see Kalnina (2011, 2023), and
we leave it for future research.

Remark 1: The rate of convergence in equation (30) can be shown to be A;lp, and the rate
of convergence in (31) and (32) can be shown to be A
Remark 2: In the one-dimensional case (d = 1), much simpler estimators of 2;5’(2) can be

n,jk~n,l h Jgkan,lman,ghon, .
constructed using the quantities )\ TN mA::_gk )\Ziy r AN as in Vetter (2015).

7 1 K 1 K

However, in the multidimensional case, the latter quantities do not identify separately the quantity

—jk,Im—=-gh,x JAm h,z ik,gh—~1lm,x L h,lm .
C ™™ since the combination Ctj O o A I o K oA shows up in a
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non-trivial way in the limit of the estimator.

Corollary 3. Let [H,(C),G.(C)]S denote either [H.(C),G,(C)|s  or [H.(C),G(C)]% de-

fined in equations (16) and (18). Suppose the assumptions of Theorem 1 hold. Then, as A, — 0,

—

[H1(C), G1(C)F — [H1(C), G (O)]7
AV S : L5 N(0, 1) (33)

In the above, we use L to denote the convergence in distribution and I, the identity matrix
of order k. Corollary 3 states the standardized asymptotic distribution, which follows directly
from the properties of the stable-in-law convergence. Similarly, by the Delta method, standardized
asymptotic distribution can also be derived for the estimators of the quantities in (21). These
standardized distributions allow the construction of confidence intervals for all the latent quantities

of the form [H,(C), G,(C)]% and, more generally, functions of these quantities.

4.4 Tests

As an illustration of application of the general theory, we provide three tests about the dependence of
Idiosyncratic Volatility. Our framework allows to test general hypotheses about the joint dynamics
of any subset of the available stocks. The three examples below are stated for one pair of stocks,
and correspond to the tests we implement in the empirical and Monte Carlo studies.

First, one can test for the absence of dependence between the continuous components of the

IdioVols of the returns on assets j and s,
H} : [Czj,Cz4)5 = 0. (34)

Under H{, A;1/4[szs]%v_l/2 LN (0,1), so we can use a t-test.
Second, we can test the hypothesis that none of the IdioVol factors II explaining the dynamics
of IdioVol shocks of stock j,
Hg + [Cz, ] = 0 (35)
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Under this null hypothesis, the vector of IdioVol factor loadings equals zero, 7, = 0. Under Hg,

AV (102 m5) (V) [Czgn Wy 5 A, (36)
so we can use a Wald test. One can of course also construct a t-test for irrelevance of any one
particular IdioVol factor. The final example is a test for absence of dependence between the

residual IdioVols of stock j and s,

H; - [CF5, O35 = 0. (37)

Under H{, AEIM[C@'}S“, Cgessz'd]%ﬁflm LN (0,1), so we can use a t-test.

Each of the above estimators

L — —

[CZja CZS]%’ [CZ]'7 H]’%v and [CE?Sidv C%(fid]’%

can be obtained by choosing appropriate pair(s) of transformations H and G in the general estimator

—

[H(C),G(C)]%, see Section 3 for details. Any of the two types of the latter estimator can be used,

For the first two tests, the expression for the true asymptotic variance, V', is obtained using Theorem
1 and its estimation follows from Theorem 2. The asymptotic variance in the third test is obtained
by applying the Delta method to the joint convergence result in Theorem 1. The expression for the
estimator of the asymptotic variance, 17, follows from Theorem 2. Under R-FM and the assumptions
of Theorem 1, Corollary 3 implies that the asymptotic size of the two types of tests for the null
hypotheses H& and Hg is «, and their power approaches 1. The same properties apply for the tests
of the null hypotheses Hg’ with our R-FM and IdioVol-FM representations.

Theoretically, it is possible to test for absence of dependence in the IdioVols at each point
in time. In this case the null hypothesis is HY : [Czj,Czs)¢ = 0 for all 0 < ¢t < T, which is,
in theory, stronger than our H&’. In particular, Theorem 1 can be used to set up Kolmogorov-

Smirnov type of tests for H(’)l in the same spirit as Vetter (2015). However, we do not pursue this
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direction in the current paper for two reasons. First, the testing procedure would be more involved.
Second, empirical evidence suggests nonnegative dependence between IdioVols, which means that
in practice, it is not too restrictive to assume [Cyzj, Czs]§ > 0 V¢, under which H} and H}' are

equivalent.

5 Empirical Analysis

We apply our methods to study the cross-sectional dependence in IdioVols using high frequency
data. One of our main findings is that stocks’ IdioVols co-move strongly with the market volatility.
This is a quite surprising finding. It is of course well known that the total volatility of stocks moves
with the market volatility. However, we stress that we find that the strong effect is still present
when considering the IdioVols.

We use transaction prices from NYSE TAQ database for S&P 100 index constituents from
2003 to 2012. Starting with the union of constituents over this period, we select only those stocks
for which complete data is available; this results in a full sample of 104 stocks. After excluding
the non-trading days, our sample contains 2517 days. We also use the high-frequency data on
nine industry Exchange-Traded Funds, ETFs (Consumer Discretionary, Consumer Staples, Energy,
Financial, Health Care, Industrial, Materials, Technology, and Utilities), and the high-frequency
size and value Fama-French factors, see Ait-Sahalia, Kalnina, and Xiu (2020). To aid visualization,
we report additional results for a subset of 30 stocks. We obtain the subset of 30 stocks by selecting
at least two stocks from each of the nine GICS sectors, together with the most liquid stocks; see
Table 1 for details. For each day, we consider data from the regular exchange opening hours from
time stamped between 9:30 a.m. until 4 p.m.

We clean the data following the procedure suggested by Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2008), remove the overnight returns and then sample at 5 minutes. This sparse sampling
has been widely used in the literature because the effect of the microstructure noise and potential
asynchronicity of the data is less important at this frequency, see also Liu, Patton, and Sheppard
(2015). The return jump truncation threshold is the same as in simulations, see Section 6. The
number of observations in the local window is taken as in Theorem 1 to be k, = A, L . We take

0 =25and A, =1/252/(6.5x12), i.e., A, is 5 minutes (with one year being a unit of time), which
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corresponds to the local window of approximately one week. The threshold for volatility jumps is
based on the individual asset volatility changing by more than 10 percentage points. The optimal
selection of this tuning parameter is a complex issue that falls outside the scope of this paper. We
find that both types of estimators, AN and LIN, produce very similar results and report only the
AN estimator for brevity.

To obtain the Idiosyncratic Volatilities, the preliminary step is to estimate the Return Factor
Model (R-FM) for each stock. Figures G.1 and G.2 contain plots of the time series of the estimated
R%/j of the R-FM for the subset of 30 stocks.'? Each plot contains monthly R%j from two Return
Factor Models, CAPM and the Fama-French regression with market, size, and value factors. Figures
G.1 and G.2 show that these time series of all stocks follow approximately the same trend with a
considerable increase in the contribution around the crisis year 2008. Higher R%/j indicates that
the systematic risk is relatively more important, which is typical during crises. R%j is consistently
higher in the Fama-French regression model compared to the CAPM regression model, albeit not by
much. We proceed to investigate the dynamic properties of the panel of Idiosyncratic Volatilities.

We first investigate the dependence in the (total) Idiosyncratic Volatilities. Our panel has
5356 pairs of stocks. For each pair of stocks, we compute the correlation between the IdioVols,
Corr (Czi, Czj), see Section 3.2 for the implementation details. All pairwise correlations are pos-
itive in our sample, and their average is 0.35. Figure 1 contains a heatmap of this dependency
measure in the IdioVols. We simultaneously test 5356 hypotheses of no correlation, and Figure
1 assigns non-zero correlations only for those pairs of assets, for which the null is rejected; the
diagonal contains zeros, too. We account for multiple testing by controlling the false discovery rate
at 5%. Overall, Figure 1 shows that the cross-sectional dependence between the IdioVols is very
strong. To aid visualization, Figure 2 maps the network of dependencies in the IdioVols for the
subset of 30 stocks. Similarly to Figure 1, in Figure 2, we simultaneously test 435 hypotheses of no
correlation, and Figure 2 connects only the assets, for which the null is rejected. Unsurprisingly,

the cross-sectional dependence between the IdioVols is also very strong among this subset of stocks.

—1— Jo Czj.edt
& Cyjat

Rij using the general method of Jacod and Rosenbaum (2013). The resulting estimator of RQY]» requires a choice of a
block size for the spot volatility estimation; we choose two hours in practice (the number of observations in a block,
say In, has to satisfy I2A, — 0 and [3A,, — o0, so it is of smaller order than the number of observations k, in our
estimators of Section 3).

2For the jt" stock, our analog of the coefficient of determination in the R-FM is R%/]- . We estimate
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Figure 1: The heatmap of dependencies in total IdioVols. 104 stocks. For every pair, we test the null
hypothesis of no dependence in IdioVols. If the null is rejected, the heatmap color is proportional to the
estimated value of Corr (Cyz;, Cz;), the quadratic-covariation based correlation between the IdioVols, defined
in equation (8). Zero value is assigned to pairs where the null is not rejected as well as the diagonal elements.

Could missing factors in the R-FM provide an explanation? Omitted return factors in the
R-FM are captured by the idiosyncratic returns, and can therefore induce correlation between the
estimated IdioVols, provided these missing return factors have non-negligible volatility of volatil-
ity. To investigate this possibility, we consider the correlations between idiosyncratic returns,
Corr(Z;, Z;).'3 Table 2 presents a summary of how estimates of Corr(Z;, Z;) are related to the
estimates of correlation in IdioVols, Corr(Cz;, Cz;). In particular, different rows in Table 2 dis-
play average values of Corr (Czi,Czj) among those pairs, for which |C/'o;"(Zi, Zj;)| is below some
threshold. We observe that even among pairs with virtually uncorrelated idiosyncratic returns, the
correlations among IdioVols are still high. This conclusion holds both for the idiosyncratic returns
and volatilities defined with respect to CAPM, as well as the R-FM with three Fama-French factors.

—_—
Moreover, we observe that IdioVol correlations, Corr (Cz;, Cz;), are similar compared among pairs

'30ur measure of correlation between the idiosyncratic returns dZ; and dZ; is
[ Czizjadt
\/fOT CZi,tdt\/fOT Czjqdt

where Cziz;+ is the spot covariation between Z; and Z;. Similarly to R%, we estimate Corr(Z;, Z;) using the
estimator of Jacod and Rosenbaum (2013).

COT’I"(Zi,Zj) = 7’7] = 17 .. 7d57 (38)
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Figure 2: The network of dependencies in total IdioVols. 30 stocks. The color and thickness of each line is
proportional to the estimated value of Corr (Cz;, Cz;), the quadratic-covariation based correlation between
the IdioVols, defined in equation (8) (red and thick lines indicate high correlation). We simultaneously test
435 null hypotheses of no correlation, and the lines are only plotted when the null is rejected.

that have high or low idiosyncratic return correlations, Corr (Czi,Czj). These results suggest that
missing return factors cannot explain dependence in IdioVols for all considered stocks. This finding
is in line with the empirical analysis of Herskovic, Kelly, Lustig, and Nieuwerburgh (2016) with
daily and monthly returns.

To understand the source of the strong cross-sectional dependence in the IdioVols, we consider
the Idiosyncratic Volatility Factor Model (IdioVol-FM) of Section 2. We first use the market
volatility as the only IdioVol factor (diy = 1).'* Panel (a) of Table 3 reports the estimates of the
IdioVol loading (5,;) and the R? of the IdioVol-FM (R%gdiOVOZ'FM, see equation (10)). Panel (a)
uses two different definitions of IdioVol, one defined with respect to CAPM, and a second IdioVol
defined with respect to Fama-French three factor model. For virtually every stock, the estimated
IdioVol factor loading is positive, suggesting that the Idiosyncratic Volatility co-moves with the

market volatility. We have also calculated the relevant t-statistics, showing that for virtually

1YWe also considered the volatility of size and value Fama-French factors. However, both these factors turned out
to have very low volatility of volatility and therefore did not significantly change the results.
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every stock, IdioVol loading 7, is highly statistically significant. Next, Figures 3 and 5 show
dependencies among residual IdioVols after accounting for the market volatility as the sole IdioVol
factor. The average pairwise correlations between the residual IdioVols, C/’oﬁ'(Cﬁ-“d, E?Sid), across
all pairs of stocks, decrease to 0.21. However, the market volatility cannot explain all cross-sectional
dependence in residual IdioVols, as evidenced by the remaining links in both Figure 3 and 5.

Finally, we consider an IdioVol-FM with ten IdioVol factors, d = 10, market volatility and
the volatilities of nine industry ETFs. We use CAPM IdioVols. Panel (b) of Table 3 reports
the corresponding R%{dm VOZ_FM, which is considerably higher than in the one-factor case, diy = 1.
Figures 4 and 6 show the implications for the cross-section of this ten-factor IdioVol-FM, for 104
and 30 stocks, respectively. The average pairwise correlations between the residual IdioVols,
&E«(Cg@ﬁid, C’Zejs"d), decrease further to 0.17. However, significant dependence between the residual
IdioVols remains, as evidenced by the remaining links in both Figures 4 and 6. Our results suggest
that there is room for considering the construction of additional IdioVol factors based on economic
theory, for example, along the lines of the heterogeneous agents model of Herskovic, Kelly, Lustig,
and Nieuwerburgh (2016).

For comparison, we also calculate the naive estimators, see equation (15). Of course, since the
naive estimators are inconsistent, we do not have valid confidence intervals to accompany them. We
focus on the one-factor IdioVol-FM. In our data set, the absolute values of the differences between
the naive and the bias-corrected estimators range, across all pairs of stocks, between 0 and 0.045
for Corr (Cyzi, Cz;), between 0 and 0.051 for Corr(Ce5i, Eej“)’id), and between 0.06 and 0.13 for
RQZ’;dw VolEM - However, the relative errors can be large, for example, for RéjdiOVOl'FM, it is 42% on
average. We find that in the instances where the differences are small, the multiplicative bias, i.e.,

the factor 2/3, dominates the additive bias both in the numerator and the denominator, so that

the multiplicative bias approximately cancels out for these estimands.
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Figure 3: The heatmap of dependencies in residual IdioVols after accounting for a single IdioVol factor: the
market variance. 104 stocks. For every pair, we test the null hypothesis of no dependence in residual IdioVols.
If the null is rejected, the heatmap color is proportional to the estimated value of Corr (C?ﬁ‘ﬂ C’gej”d)7 the
quadratic-covariation based correlation between the residual IdioVols, defined in equation (9). Zero value is
assigned to pairs where the null is not rejected as well as the diagonal elements.

Figure 4: The heatmap of dependencies in residual IdioVols after accounting for ten IdioVol factors: the
market variance and the variances of nine industry ETFs. 104 stocks. For every pair, we test the null
hypothesis of no dependence in residual IdioVols. If the null is rejected, the heatmap color is proportional to
the estimated value of Corr (C35*', %), the quadratic-covariation based correlation between the residual
IdioVols, defined in equation (9). Zero value is assigned to pairs where the null is not rejected as well as the
diagonal elements.
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Figure 5: The network of dependencies in residual IdioVols after accounting for a single IdioVol factor: the
market variance. 30 stocks. The color and thickness of each line is proportional to the estimated value of
Corr (C’Eeﬂd, C’ge-“d), the quadratic-covariation based correlation between the residual IdioVols, defined in
equation (9) (red and thick lines indicate high correlation). We simultaneously test 435 null hypotheses of

no correlation, and the lines are only plotted when the null is rejected.
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Figure 6: The network of dependencies in residual IdioVols after accounting for ten IdioVol factors: the

market variance and the variances of nine industry ETFs. 30 stocks. The color and thickness of each line

is proportional to the estimated value of Corr (C%5, Cg‘}“d), the quadratic-covariation based correlation

between the residual IdioVols, defined in equation (9) (red and thick lines indicate high correlation). We
simultaneously test 435 null hypotheses of no correlation, and the lines are only plotted when the null is

rejected.

29



Sector Stock Ticker

Financials Bank of America Corp BAC
Goldman Sachs Group Inc GS
JPMorgan Chase & Co JPM
Wells Fargo & Co WEFC
Energy ConocoPhillips COP
Chevron Corp CVX
Exxon Mobil Corp XOM
Consumer Staples Altria Group Inc MO
Procter & Gamble Co PG
Walmart Inc WMT
Industrials Caterpillar Inc CAT
GE Aerospace GE
Information Technology  Apple Inc AAPL
Cisco Systems Inc CSCO
HP Inc HPQ
Intl Business Machines Corp IBM
Intel Corp INTC
Microsoft Corp MSFT
Oracle Corp ORCL
Qualcomm Inc QCOM
Health Care Amgen Inc AMGN
Johnson & Johnson JNJ
Merck & Co MRK
Pfizer Inc PFE
Consumer Discretionary ~ Amazon.com Inc AMZN
Ebay Inc EBAY
Materials Alcoa Corp AA
Dupont de Nemours Inc DD
Communication Services AT&T Inc T

Verizon Communications Inc  VZ

Table 1: The set of 30 stocks used in the maps of network of dependencies in (residual) IdioVols in Figures
2, 5, and 6.
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(a) (b) (a) (b)

CAPM FF3 Model CAPM CAPM FF3 Model CAPM

dnp =1 dn =1 dn =10 dn=1 dnp =1 dn =10

Stock o R2Z,IVFM 3y R%IVFM RZZ,[VFM Stock | A, RQZ,IVFM 3, Rzz,JVFM R%IVFM
AA 0.57 0.12 |0.56  0.12 0.25 HNZ |0.36  0.52 | 0.36 0.52 0.72
AAPL 030 0.07r |0.30 0.07 0.19 HON |0.32 0.21 0.31 0.21 0.41
ABT [023 020 |0.23 0.20 0.35 HPQ | 044 0.15 |044 0.15 0.29
AEP 037 029 |036 0.29 0.44 HSH |0.19 0.11 0.19 0.12 0.18
AES 049 0.07 |049 0.07 0.19 IBM 035 044 |0.35 0.45 0.55
AIG 0.37 0.02 ]036 0.02 0.11 INTC |0.37 025 |0.37 0.25 0.42
ALL 029 0.07 |029 0.07 0.20 IP 034 0.07 |0.33 0.07 0.22
AMGN 0.29 019 |0.29 0.18 0.28 JNJ 1037 062 |037 0.62 0.69
AMZN | 0.56 0.19 | 0.55 0.19 0.31 JPM 034 0.06 |034 0.06 0.24
APA 033 014 |0.32 0.14 0.36 KO 032 055 |0.31 0.54 0.62
APC 027 005 |0.26 0.04 0.17 LLY 040 046 |0.39 046 0.55
ATI 0.35 0.03 |0.35 0.03 0.14 LMT |040 028 ]0.39 0.28 0.39
AVP 0.25 0.04 ]0.24 0.03 0.18 LOW | 047 0.28 |045 0.27 0.41
AXP |040 0.09 ]0.39 0.09 0.29 MCD |0.30 0.20 |0.30 0.20 0.28
BA 037 030 |0.36 0.29 0.37 MDLZ | 0.28 0.26 |0.27  0.26 0.31
BAC 0.42 0.03 | 0.42 0.04 0.10 MDT |0.50 0.55 |0.50 0.56 0.60
BAX |0.22 0.05 |0.22 0.05 0.17 MET |0.25 0.05 |0.25 0.05 0.14
BHI 0.25 0.06 | 0.25 0.06 0.21 MMM |0.25 030 |0.24 0.29 0.43
BK 0.55 0.09 ]0.54 0.09 0.30 MO 043 036 |043 0.36 0.39
BMY |030 025 |030 0.25 0.30 MON |0.34 0.05 |0.33 0.05 0.15
C 0.26 0.02 |0.26 0.02 0.18 MRK | 040 0.20 |039 0.20 0.30
CAT 053 032 |053 033 0.40 MSFT | 0.51 0.59 |0.50 0.60 0.68
CI 0.46 0.08 |0.45 0.08 0.18 NKE |053 045 |0.53 0.45 0.52
CL 0.19 029 |019 0.30 0.37 NOV |030 0.04 |0.29 0.04 0.18
CMCSA | 0.37 020 |0.37 0.20 0.27 NSC | 0.41 0.17 | 041 0.16 0.36
COF |0.56 0.08 |056 0.08 0.21 ORCL | 036  0.25 |0.36 0.25 0.40
COP ]0.35 0.18 |0.35 0.18 0.40 OXY |035 0.11 0.34  0.10 0.31
COST | 0.32 0.30 | 0.32 0.30 0.35 PEP |0.27 044 |0.27 045 0.57
CPB 0.17 0.09 |0.17 0.09 0.26 PFE |030 020 |030 0.21 0.24
CSC 0.32 0.08 | 0.32 0.08 0.10 PG 0.27 058 |0.27  0.58 0.65
CSCO 039 027 |039 0.27 0.44 QCOM | 0.45 0.24 | 045 0.24 0.36
CVS 0.33 0.15 033 0.15 0.24 RF 0.50 0.03 |0.50 0.03 0.14
CvxX 029 023 |0.28 0.23 0.47 ROK |0.54 0.22 |0.53 0.22 0.27
DD 046 046 |045 0.46 0.54 S 039 0.02 |0.38 0.02 0.11
DELL | 0.32 0.15 | 0.32 0.15 0.26 SBUX | 049 0.24 |048 0.24 0.32
DIS 0.42 0.36 | 0.42 0.36 0.50 SO 0.36 0.66 |0.35 0.66 0.72
DOW | 047 0.16 |047 0.16 0.21 T 0.53 030 |0.53 0.30 0.47
DVN |0.31 0.09 |0.31 0.09 0.30 TGT |0.62 0.31 0.62 0.31 0.41
EBAY | 050 026 |0.50 0.26 0.45 TWX | 053 0.41 0.52 0.41 0.47
EMC |047 020 |047 0.20 0.37 TXN 042 030 |0.42 0.30 0.46
EMR |0.26 0.11 0.26 0.11 0.19 UIS 0.30  0.01 0.29  0.01 0.04
ETR |034 032 |034 0.32 0.47 UNH | 063 023 |0.64 0.24 0.28
EXC 0.44 0.26 | 0.42 0.25 0.40 UNP |0.56 0.29 |0.55 0.29 0.43
F 0.52 0.05 | 0.51 0.05 0.15 UPS 033 049 |0.33 0.49 0.56
FDX |034 030 |034 0.30 0.41 USB |0.60 0.18 |0.60 0.18 0.37
GD 0.45 043 |044 044 0.55 UTx 038 033 |0.38 0.33 0.49
GE 0.38 0.09 |0.38 0.09 0.31 AW/ 0.41 0.38 040 0.38 0.51
GILD |0.37 015 |0.38 0.16 0.26 WFC 033 0.05 |0.32 0.05 0.21
GS 043 012 |043 0.12 0.31 WMB |0.35 0.03 |0.35 0.03 0.10
HAL 029 005 |0.29 0.05 0.21 WMT | 0.28 047 | 0.28 0.48 0.56
HD 036 022 |0.36 0.22 0.47 XOM 035 024 ]0.35 0.24 0.35
HIG 027 003 |0.26 0.03 0.09 XRX 052 018 |0.52 0.18 0.24

Table 3: Panel (a) presents estimates of the IdioVol factor loading (7, see eq. (6)) and the contribution of

the market volatility to the variation in the IdioVols (R%IVFM: ﬁ%’ldiOVOl’FM, see eq. (10)) in the one-factor
IdioVol-FM, dj; = 1. Panel (a) considers two R-FMs, CAPM or the three-factor Fama-French model (FF3).

Panel (b) presents Rzz’WFMin the ten-factor IdioVol-FM, dp; = 10, with CAPM IdioVols.



6 Monte Carlo

This section investigates the finite sample properties of our estimators and tests. The data gener-
ating process (DGP) is similar to that of Li, Todorov, and Tauchen (2013) and is constructed as
follows. Denote by Y7 and Y5 the log-prices of two individual stocks, and by X the log-price of
the market portfolio. Recall that the superscript ¢ indicates the continuous part of a process. We

assume
dX; = dX{ +dJsy, dX{=+/CxdWi,
and, for j =1, 2,
dYje = Byd X+ dYS, + dJjy, dYS = \/Cry0dWy.

In the above, C'x is the spot volatility of the market portfolio, Wl and Wg are Brownian motions
with Corr(d/WLt,d/W/g,t) = 0.4, and W is an independent Brownian motion; Ji,J2, and Js are
independent compound Poisson processes with intensity equal to 2 jumps per year and jump size
distribution N(0,0.022). The beta process is time-varying and is specified as 3, = 0.5+0.1 sin(100t).

We next specify the volatility processes. As our building blocks, we first generate four processes

fi, ..., fa as mutually independent Cox-Ingersoll-Ross processes,

df1y = 5(0.00 — fi)dt + 0.35\/f17t< — 0.8dW; + /1 — 0.82dBLt>,

dfjﬂg = 5(0.09 — fj,t)dt + 0.35+/ fj’tdBj’t , for j =2,3,4,

where Bi,..., By are independent standard Brownian Motions, which are also independent from
the Brownian Motions of the return Factor Model.!> We use the first process f; as the market
volatility, i.e., Cx; = f1+. We use the other three processes fa, f3, and f4 to construct two different
specifications for the IdioVol processes Cz1; and Cgzay, see Table 4 for details. The common
Brownian Motion W; in the market portfolio price process X; and its volatility process Cx; = fi¢

generates a leverage effect for the market portfolio. The value of the leverage effect is —0.8, which

15The Feller property is satisfied implying the positiveness of the processes (fit)1<j<a-
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is standard in the literature, see Kalnina and Xiu (2017), Ait-Sahalia, Fan, and Li (2013) and

Ait-Sahalia, Fan, Laeven, Wang, and Yang (2017).16

Cz14 Czo

Model 1 0.1+ 1-5f2,t 0.1+ 1-5f3,t
Model 2 0.1 + 0.45CX¢ + f2,t + 0-4f4,t 0.1+ 0.350)(’15 + 0.3f3’t + 0.6f4,t

Table 4: Different specifications for the Idiosyncratic Volatility processes Czy+ and Cza ;.

We set the time span T equal to 1,260 or 2,520 days, which correspond approximately to 5
and 10 business years. These values are standard in the nonparametric leverage effect estimation
literature (see Ait-Sahalia, Fan, and Li (2013) and Kalnina and Xiu (2017)), where the rate of
convergence is also A~1/4. Each day consists of 6.5 trading hours. We consider two different values
for the sampling frequency, A,, = 1 minute and A,, = 5 minutes. We follow Li, Todorov, and
Tauchen (2016) and set the jump truncation threshold u, in day t at 35;A%4° where 7, is the
squared root of the annualized bipower variation of Barndorff-Nielsen and Shephard (2004). We
choose four different values for the width of the subsamples, which corresponds to § = 1.5,2,2.5
and 3 (recall that the number of observations in a window is k, = 6//A,,). We use 10,000 Monte
Carlo replications in all the experiments.

We first investigate the finite sample properties of the estimators (using Model 3). We consider

the following estimands:

the IdioVol factor loading of the first stock, vy,

the contribution of the market volatility to the variation of the IdioVol of the first stock

2, Idio Vol-FM
RZl ’

the correlation between the Idiosyncratic Volatilities of stocks 1 and 2, Corr (Cz1,Cz2),

the correlation between the residual Idiosyncratic Volatilities, Corr (C’gef’id, 2623id).

In Table 5, we report the median bias, the interquartile range (IQR), and the RMSE of the

two type of the bias-corrected estimators as well as the naive estimator for each estimand using 5

SNotice that by Ité6 Lemma, each of these three models can be expressed in terms of equation (1) for the vector
(X¢,Y1,,Y2:)" and equation (2) for the volatility matrix of this vector.
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minutes data over 10 years. In Tables 5-7, in order to simplify the interpretation of the results, we
fix the volatility paths Cx; and (fj:)o<j<4 across simulations.

Consider first the comparison of the AN and LIN estimators. One does not consistently over-
perform the other in terms of the bias or the IQR. Interestingly, in terms of the RMSE, the LIN
estimator outperforms the AN estimator in every scenario considered. The naive estimators are
substantially biased. The comparison of the bias-corrected estimators and the naive estimators
reveals the usual bias-variance trade-off, as the bias-corrected estimators have smaller bias but
larger IQR than the naive estimator. In terms of RMSE, the bias-corrected estimators generally
outperform the naive estimator: RMSE is significantly lower when estimating ~y 1, R%fdiOVOZ_FM,
or Corr (Cyz1,Czs), while the results for Corr (Cgefid, QEQSid) are mixed.

It is also informative to see how these results change when we increase the sampling frequency. In
Table 6, we report the results with A,, = 1 minute in the same setting. The qualitative conclusions
of Table 5 remain true in Table 6. Compared to Table 5, the bias and IQR are smaller. However,
the magnitude of the decrease of the IQR is small.

Finally, Table 7 contains results from same experiment using data sampled at one minute over
5 years. Despite using more than twice as many observations than in the first experiment, the
precision is not as good. In other words, increasing the time span is more effective for precision
gain than increasing the sampling frequency. The qualitative conclusions generally remain the same
as in Table 5.

Next, we study the empirical rejection probabilities of the three statistical tests as outlined in
Section 4.4. The first null hypothesis is the absence of dependence between the IdioVols, H& :
[Cz1,Cz2)lr = 0. The second null hypothesis we test is the absence of dependence between the
IdioVol of the first stock and the market volatility, H3 : [Cz1,Cx]r = 0. The third null hypothesis
is the absence of dependence in the two residual IdioVols, HJ : [C’gefid, C%Sid];p = 0.

Table 8 presents the empirical rejection probabilities of the t-tests corresponding to the null
hypotheses H}, HZ, and H$ in the above, in Model 1. In Model 1, these null hypotheses are true,
so numbers in Table 8 represent empirical size. We present the results for two sampling frequencies
(A, = 1 minute and A,, = 5 minutes) and the two type of estimators (AN and LIN). We see that

the empirical rejection probabilities are reasonably close to the nominal size of the test. Neither
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type of estimator (AN or LIN) seems to dominate the other. Consistent with the asymptotic theory,
the empirical rejection probabilities of the three tests become closer to the nominal size of the test
when frequency is higher.

Table 9 presents the empirical rejection probabilities of the t-tests for the same null hypotheses
in Model 2. In this model, all three null hypotheses are false, so the numbers in the table represent
power. The magnitude of dependence between the residual IdioVols, [C%efid, CEZSid]T, is of course
smaller than the magnitude of the dependence between total IdioVols, [Cz1, Cz2]r, so the power
in Panel C is lower than in Panel A. However, in most of the cases the power is still nontrivial,

especially for larger block sizes 6, and clearly increasing with higher frequency.

A, = 5 minutes A,, = 1 minute
=15 0 =20 0 =25 =15 0=20 0=25
AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : H& 2 [Cz1,Cz2)l7 =0

a=10% 98 121 10.8 12.6 11.1 12.6 10.8 114 113 11.1 10.7 11.2
a=5% 55 52 54 61 60 6.9 6.6 63 57 53 53 5.1
a=1% 10 15 09 17 05 1.1 16 13 12 11 09 06

Panel B : H? :[Cz1,Cx|r =0

a=10% 10.2 103 104 109 9.9 10.0 97 89 92 90 104 104
a=5% 46 45 45 46 48 5.1 5.1 45 48 54 54 53
a=1% 08 05 1.1 09 11 1.3 1.1 13 11 12 09 1.1

Panel C : H} : [C35, O%5 )y = 0

a=10% 10.0 11.7 10.8 12.7 11.5 12.6 11.0 11.2 11.2 10.7 10.7 11.7
a=5% 59 49 57 61 59 7.3 64 64 54 52 49 49
a=1% 10 15 09 15 06 1.0 18 14 13 12 09 06

Table 8: The size of the t-tests. Model 1. T'= 10 years. « denotes the nominal size of the test.
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A, = 5 minutes

A,, = 1 minute

0=15 0 =2.0 0=25 0=15 0 =2.0 0 =25
AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN
Panel A : H} :[Cz1,Czl7r =0
a=10% 203 315 368 47.0 542 648 325 398 646 69.6 880 910
a=5% 119 214 254 365 41.0 540 218 281 495 57.2 792 844
a=1% 30 70 82 169 20.1 286 9.9 132 27.6 322 548 62.2
Panel B : H? :[Cz1,Cx|r =0
a=10% 60.2 67.6 83.0 87.9 939 963 918 93.6 99.6 99.6 100.0 100.0
a=5% 458 572 729 79.0 885 91.9 866 89.5 984 988 100.0 100.0
a=1% 234 316 508 586 70.6 764 685 725 940 952 992 99.3
Panel C : H : [Ci5, Co5 ) r = 0
a=10% 14.2 19.9 226 295 309 386  19.6 223 335 365 529 584
a=5% 74 126 141 205 21.6 292 121 148 224 266 398 446
a=1% 15 33 48 69 84 121 32 52 100 121 195 229

Table 9: The power of the t-tests. Model 2. T = 10 years. « denotes the nominal size of the test.

7 Conclusion

We introduce an econometric framework for analysis of cross-sectional dependence in the IdioVols of
assets using high frequency data. First, we provide bias-corrected estimators of standard measures
of dependence between IdioVols, as well as the associated asymptotic theory. Second, we study
an IdioVol Factor Model, in which we decompose the variation in IdioVols into two parts: the
variation related to the systematic factors such as the market volatility, and the residual variation.
We provide the asymptotic theory that allows us to test, for example, whether the residual (non-
systematic) components of the IdioVols exhibit cross-sectional dependence.

To provide the bias-corrected estimators and inference results, we develop a new asymptotic
theory for general estimators of quadratic covariation of vector-valued (possibly) nonlinear trans-
formations of the spot covariance matrices. This theoretical contribution is of its own interest, and
can be applied in other contexts. For example, our results can be used to conduct inference for the
cross-sectional dependence in asset betas.

We apply our methodology to the S&P100 index components, and document strong cross-
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sectional dependence in their Idiosyncratic Volatilities. We consider two different sets of idiosyn-
cratic volatility factors, and find that neither can fully account for the cross-sectional dependence
in idiosyncratic volatilities. For each model, we map out the network of dependencies in residual

(non-systematic) Idiosyncratic Volatilities across all stocks.
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Appendix

Sections A-E contain all proofs. Section F contains some numerical implementation details.
Section G contains additional figures for the empirical application.

The proofs are organised as follows. Section A introduces additional notation. Section B
presents auxiliary theorems and lemmas used to prove Theorems 1 and 2 in the main paper.
Section C proves Theorem 1. Section D proves Theorem 2. Section E collects the proofs of the
auxiliary results of Section B.

A Notation for Proofs

Our notation is similar to that of the proofs of Jacod and Rosenbaum (2015) whenever possible. Throughout,

we denote by K a generic constant, which may change from line to line. We let by convention Zf/:a =0
when a > a’. For simplicity, we omit the subscript r for results involving only one object with this subscript.
By the usual localization argument, there exists a m-integrable function J on E and a constant such that
the stochastic processes in equations (26) and (27) satisfy

111 811 llell, 1211, T < A, |8(w, £, 2)[” < J(2). (A1)

We set

n n raik ral An ~
F'=Fin,, Ci' =Cia,, C; =Cia,, and C}' = Cia,, .

n?

For any cadlag bounded process Z, we set

o<u<

nt,s<Z>=\/E( sup [|Z = Zi|?|F:), and

nii(Z2) = \/]E( sup | Zi—1ya, +u — Z(z‘—l)An||2|f(z'—1)An)~
0<u<jA,

For convenience, we decompose Y; as
Yo =Yo+ Y+ A
s<t
where Y/ = fot b.ds + fg osdWy and by = by — [ 0(t, 2)1{51,2) <137 (dz).
Let @'” be the local estimator of the spot variance of the unobservable process Y7, i.e.,

kn—1
~ 1 < ~Im
G =X > (ALY ALY = (C ") 1<gn<a. (A.2)
=N =0

There is no price jump truncation applied in the definition of CA'Z'" since the process Y is continuous. Hence,

~

it is more convenient to work with C/™ rather than C? (= Cia, , defined in equation (14)).
We also define

aff = (AFY)ATY')T = Cha—nya, An, v}

n 3 7

=C" = Clinya,, and N} =Cily =G, (A-3)

3
which satisfy

kn—1
n 1 N n n
V= A D (@ + (Cligj—nya, —Cli-na,)An) and A = vigg, =17 +Clir,—1a, —Cli—na, - (A4)

=0

The following multidimensional quantities will be used in the sequel



()} = a-A7 ’(A?Y’)T - Oy, ((2)F =Afc,
¢ (u)f =E(C ( ) Fiia) ()i = C(u)i = (w7,
¢(wyr = (¢ )y o o with r =/ or ",

For 1 < g,h <dand u,v=1,2, define

2kp,—1

pghuv ZAUU Cgh )

We also define, for m € {0,...,2k, — 1} and j,l € Z,

-1 if0<m<k,
Nr = = )" — 1)* = 1) A2k, —m —1),
e(1)y, {H Tk <m<on C@m= 2 g =(mEDA @k —m 1)

li /
For any u, v, m,u’, v, we set

1 otherwise,

1A, ffu=v=1
z”:{/ ifu=w

(I—-m—1)V(2k, —m—1)

A, v; m) = 2k3 Z 6(U)Z€(u)g+m, AMu,v)p, = )\(u,v;m)&%",
q=0Vv(j—m)
2ep—1

M (u, v;u', 0" )n = 23 200 Z A, v) A (W, 0"
—

We also need some notation for volatility jumps. Denote by N, the number of jumps in C from time 0 to s.
Let

L (n) {i=kn+1kn+2,...: Nupaykna, — Ni-ykna, =0},
L(n,T) = {i=1,2,...[T/A,] —3kn+1}NL(n), (A.5)
L'(n,T) = {i=1,2,.,[T/A):i—2k, € L(nT)},
L(n,T) = {i=1,2,..,[T/A,] =3k, +1}\L(n).

Additionally, set

2k, —1
A11(H, gh,w; G, ab,v)} = Z ( Z e(u ) (Ogn HOabG)(Ci—2k, —1)A,, )C(U)?ghq“)?’ab
n €L/ (n,T) j=0
=Muw )i Y (OnHOwWG)(Climar,—1ya, ) ()" C(0), (A.6)
i€l (n,T)
and
5 (i—1)A(2kn—1) (2kn—m—1)
AT(H, gh,w; G ab,v)f = o > OnHOuG)(Clian,-1)a,) D > ew)e()ry,,
el (n,T) m=1 3=0
X Cn ()i mCap (V)7 (A7)
— AN _— LIN

Denote by 97 and 95V the i*" summand of [H(C),G(C)]5  and [H(C),G(C)]5 , without the
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volatility jump truncation, so they satisfy

[T/An]—3kn+1

— AN
[H(C),GO)r = > M anag.,)s and (A-8)
i=kp+1
N [T/An)—3kn+1
[H(C),G(O)]7 = > 0 Nnag., (A.9)

i=kn+1

Let 9; be either 927N or 92N,

B Auxiliary Lemmas and Theorems

This section presents useful auxiliary results, which are used in the proofs of Theorems 1 and 2. The results
of this section are proved in Section E below.

First, we explain why we can assume, without loss of generality, that the derivatives of functions H,
and G, are bounded, for 7 = 1,..., k. Assumptions of Theorem 1 imply Lemma 2 of Li, Todorov, and
Tauchen (2017a). Therefore, we can assume that the variables C;a, are bounded, uniformly over i €
{0,...,[T/A,] — kn + 1}, with probability approaching one. Using the spatial localization argument of Li,
Todorov, and Tauchen (2016), which in turn uses the spatial localization argument of Li, Todorov, and
Tauchen (2017a), we can assume that H, and G, are compactly supported without loss of generality. Hence,
the derivatives of functions H, and G, are bounded, for r =1,... k.

We start with two auxiliary theorems for volatility jump truncation.

Theorem B1. Under the assumptions of Theorem 1, we have

Do Viltanan,y— Y, Yi=o0p <A1/4)

i€L(n,T) i€L(n,T)

Theorem B2. Under the assumptions of Theorem 1, we have

Z Vil{a;nA; e,y = Op (A}/‘l) '

i€L(n,T)

Theorems B1 and B2 allow us to focus on the simpler leading term . L(n,T) 9; instead of the original

estimator(s) Zg/kf +}1 Bkt Vil{a;nA,,,,} for the remaining proofs. Our next theorem shows negligibility

of price jump truncation.

Theorem B3. Let 19/LIN and 19’AN be the modifications of 19UN and 19AN obtained by replacing C” by C "
in the definition of 19LIN and 19AN in equations (A.9) and (A 8). Under the assumptions of Theorem 1, we
have

1/4( Z 19LIN Z 1%LIN)i)O

i€L(n,T) i€L(n,T)
and A;W( R ﬁgAN) £ (B.10)
i€eL(n,T) i€L(n,T)

Theorem B3 allows, in particular, to focus on the derivation of the asymptotic distributions of
Yicrmm U and Y 97N The next theorem connects the LIN and AN versions of these quan-
tities. To state the theorem, define

d
3 n,a ~'n,a
W= Y ((aghﬂaabm (Clana)| (il = EM(Cler =G (BaY)
n g,h,a,b=1
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~'n,ga A'n,hb ~'n,gb A'n,ha
= (GG 1 O >}>.

where superscript (A) stands for “approximated”. For simplicity, we do not index the above quantity by a
prime although it depends on C;" instead of C.

Theorem B4. Under the assumptions of Theorem 1, we have

1/4( Z 19’L1N Z 191(’4))&)0 and

i€L(n,T) i€L(n,T)
A;l/“( DR Y 191(.‘4)) £, (B.12)
i€L(n,T) i€L(n,T)

where 19§A) is defined in equation (B.11).

—_— C
Theorem B4 shows that the leading terms of the the two estimators of [H(C), G(C)|+, > _. PN and
T i€L(n,T) 71
D i L(n,T) 19§AN can be approximated by a certain quantity with an error of approximation of order smaller

than A, '/*.
Now, we decompose the approximated estimator as follows

9 =g i) (B.13)
with
d
A 3 n, n, N'n,a ~N'n,a
I = S (0,H0,6) )~ G — C),
n g,h,a,b=1
and .
3 N'n,ga A'n, n, n,ha
195.“2):]72 ST (OnHOWG) (CI ) (O T 4 Coobaymhe.
" g,h,a,b=1

The following theorem holds:

Theorem B5. Under the assumptions of Theorem 1, we have

d 2
19 (A1) Al1(H, gh,u; G, ab,v)% + A12(H, gh, u; G, ab, v)%
A1/4
n 7h7a’ v=1

i€L(n,T)

+ A12(G, ab,v; H, gh,u)%) =0

Lemma B1. For any cadlag bounded process Z, for allt,s >0, j,k >0, set n, ; = nt,s(Z). Then,

[t/An] [t/A]
(ank>—>07 (ZTIZQIC,,)—)O

[t/An]
E<Ui+j,k|]:in> <n; 4k and AnE< Z ;i 4k, ) — 0.

Lemma B2. Let Z be a continuous Ité process with drift b7 and spot variance process CZ, and set N =
n;.s(b%,¢?). Then, the following bounds hold:

’]E(Zt

Fo) — tbg‘ < Ktny,



E(ZizF - tCOZ’j’“‘J-'O)‘ < K32 (/A +1ng4)

B((Z1 7k —tCE) crm - ot 7o) | <

E(ZngZthm ]_‘0) _ AZ(COZJkCOZ,lm +COZ7jICOZ7k}m +COZJWCOZ,kl>‘ < Kt5/2
ezt < ke
6 . A3 o . -
]E(H Zt]l -/—"0) _ #Z Z Z OOZJ”“COZJICJ)C,COZJMJW/ < Kt7/2
=1 <l k<k’ m<m/'
q
E( sup || Ziw — 2, ]-‘t) < K592, and HIE(ZHS - Zt) 7| < Ks. (B.14)
wel0,s]

(B.15)

Lemma B3. Let (; be a r-dimensional F'-measurable process satisfying |E((|F)I < L' and
IE(HC?H‘I‘]-'ﬁl) < Lg. Also, let o} be a real-valued F]*-measurable process with E<H<p?+j71||q‘]-"[‘71) < L4
forq>2and1 <j <2k, —1. Then,

|

Lemma B4. Under the assumptions of Theorem 1, we have, for i € L (n,T):

2k, —1 q

n n
E %‘ﬂﬂ(iﬂ‘
j=1

fﬁ1> < K,L° (qug/Q + L’ng).

n,jkyn,myn,gh n,ab
E( >\i )\z )\i+2k’n )\i+2kn

4 . .
n n,ga ~n,hb n,gb ~m,ha n,jl ~n,km n,jm ~mn,kl
ifl) - k_iz (Ci—l Ci—l + Ci—l Ci—l )(Ci—l Ci—l + Ci—l Ci—l
n

AN, [ i ; —m.ghab  4A —n,jk,l
gl ~m,km n,jm ~mn,kl n,gh,a n n,ga ~n,hb n,gb ~n,ha n,Jk,tm
- 3 (Ci—l Ci—l + Ci—l Ci—l )Cifl - 3 (Ci—l Ci—l - Ci—l Ci—l )Cifl
4(k)nAn)2H1,gh,ab—n,jk,lm

C;.510 G < KAn(Arl/S + 77?,41@")

9

Lemma B5. Under the assumptions of Theorem 1, we have, for i € L (n,T):

E( vttt B )| < KAV (A ), (B6)
(v vt (Cgn_y = o) | i )| < KAy (Al 4, ), (B.17)
(vt (e — o) (Crge oy - o) | 7 ) | < KAV (AY 4y, ), (BAS)
[E( vt Fe)| < KAV (AY 4 o, ), (B.19)
’E( A?:jk}\?,l”ﬂl)\?ygh ]:in_l) < KA3/4 (A’}L/4+n22kn> (BQO)
Lemma B6. Under the assumptions of Theorem 1, we have:
L np (oyn P
1/4 Z (6th8abG)(C(i72kn71)An)pgh(uaU)i Cab(v)i =0, V (U,U) (B21)
An' ieL(m)
1 — T —gh,ab P
F(A11(H, ghyw; G,ab,v) = | (0nHOwG)(CT dt) 2.0 when (u,v) = (2,2) (B.22)
I (= 3 /7 a vhb b h P
77 (AT gh. s Gab) = /0 (0 HOWG)(C) (CLCL + 020l t) 25 0 (B.23)
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when (u,v) = (1,1),

P
A1/4A 1(H, gh,u;G,ab,v) = 0 when (u,v)=(1,2),(2,1) (B.24)

C Proof of Theorem 1

We now prove Theorem 1. By Theorem B5, we have

d 2
A1/4< Z 19(A1) Z Z A11(H, gh,u; G, ab,v)} + A12(H, gh,u; G, ab,v)}:

i€L(n,T) g,h,a,b=1u,v=1

+ A12(G, ab,v; H, gh, u) ) = 0.

Recalling the definition of A12(H, gh,u; G, ab,v)% from equation (A.7), Lemma B6 implies that

Ai/4< S 9 [H(O),G(O)r - kg Z Z 3 (C.25)

i€L(n,T) " g,h,a,bu,v=14i€L!(n,T)

|0 HOWG)(Clivat, 118, )P 1 0) Cop (0)F + (Our HOpE) (Cli-2, 1), )P (v u)?c;;h(v)?]) =0,

Next, define
1
f(H, gh,u; G, ab, U)? = F(athaabG) (C(i—an—l)An)pgh (u’ U)?Cgb(v)?v
n
[t/Aq]
Z(H, gh,u; G, ab,v); = A/* Y 7 €(H, gh,u; G ab, )}
i=2kn

Notice that (C.25) implies

d 2
A}/4 ( Z 7‘9(A ) ) é Z Z 1/4 ( Ha gh7u§ Ga ab,v)TTl

i€L(n,T) g,h,a,b=1u,v=1

+ Z(H,ab,v; G, gh, u)’%). (C.26)

The term 195’4) depends on functions H and G, where we have so far suppressed the subscripts r, r = 1,..,

)

in the statement of Theorem 1 for simplicity. Denote by 195)’2) the term 195’4) that depends on functions
H, and G,.. Observe that to derive the asymptotic distribution of (ZieL(n 7) 19%), s ZZeL(n ) 19(A)> , 1t
suffices to study the joint asymptotic behavior of the family of processes Al —72Z(H, gh,u; G, ab,v)%. Notice

that £(H, gh,u; G,ab,v)} are martingale increments relative to the discrete filtration (F*). Therefore, to

obtain the joint asymptotic distribution of 1/4Z(H, gh,u; G, ab,v)%, it is enough to prove the following
three properties:

A((H, gh, u; G ab,v), (B, o'W '3 G a't o))
t

= Z E(&(H, gh,u; G, ab,v)E(H'  g'W u's G a0 ) F L) (C.27)
ieL/(n,T)
RN A((H, gh,u; G, ab,v), (H’,g'h’,u';G’,a’bﬂv’)) , (C.28)
t
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n 4
Z E(‘f(H, gh,u; G, ab, U), ") N 0, and (C.29)
€L’ (n,T) !
P
B(N: H,gh,u; G,ab,v)i = > E(&§(H, gh,u; G, ab, )} AIN|FL, ) =50, (C.30)

ieL!(n,T)

for all t > 0, all (H, gh,u;G,ab,v),(H',g'h/,u';G’,a’'b,v") and all martingales N which are either bounded
and orthogonal to W, or equal to one component W7,

Since the derivatives of H, and G, are bounded, equations (C.29) and (C.30) can be proved by an extension
of (B.105) and (B.106) in Ait-Sahalia and Jacod (2014) to multivariate processes.

Next, define

(Cret v oy i (v,0) = (1,1)
Vi (0, 0)e = o it (0,0)=(22)
0 otherwise.

Using again the boundedness of the derivatives of H,. and G,., we can show that
A((H, gh,us G,ab, o) (H', g, /s &' a'V o)) =
t

t
M (u,v;u,v") / (Ogh HOat GOy 1 HOary G)(C) Vi ¥ (v0,0") VI (') odls,
0

with
3/6° if (w,viu/,0") = (1,1;1,1)
Mool oy = /46 a0 (wos, o)y = (1,21,2), (2,1:2,1)
1510/280 if  (u,v;u’,v") = (2,2;2,2)
0 otherwise.

Therefore, we have
A((H, gh,u; G, ab,v), (H’,g’h’,u’;G’,a’b’,v’))T =

& fOT(athaabGag’h’H/aa’b/G/)(Ct)(cfglcthh/ + 9N oMy (Cad OB 4 et o)t

if (u,v;u’,v")=(1,1;1,1)
5 1y O HOWGO, e H' Dy G (C)(CET O+ O )T i (v, 0') = (1,231,2)
35 Iy O HOup GOy H' Dy G (Co) (e OFY 4 Gt Oy Pt i (uod V) = (2,1,2,1)
Sas fo OgnH 00y GOy H' Oy ’b'G/)(Ct)Cab o C'gh’g " dt, if (u,v;u’,0") =(2,2;2,2)
0 otherwise.

Using equation (C.26), we deduce that the asymptotic covariance between 3,/ ,, 1) 19( and 3 e r 1) 195'2)

is given by

d d 2
DD <A(<Hr,gh,u; Gy ), (Hov ' G, 01)
g,h,a,b=1g’,h’ ,a’ b'=1 u,v,u’ ,v'=1 T

+A((Hr, gh, s Gy ab,v), (Hy, 'V 05 G g/l o))

(Hryab, 03 G ghy ), (o, ' s Gyt 0'))

—&-A((HT, ab,v; Hy, gh,u), (Hs,a'b',v"; Gy, g'W, u’))T> .
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The above expression can be rewritten as

d d T
6 , ,
>y ( /0 (O Hy- 00y Gr Ot H O G5 (Cr) ) [(cfﬂ Crr v offep et + opmert

n3
g,h,a,b=1 j,k,l,m=1 0
+(ngcfk+Cgkcfj)(ctglC[bm+Ctng?l)i| dt

1516
140

t . .
/ (Ogh Hy 0 G Ho O G (Cy)) [éfh’]’“éjb’lm + éjb”’“éf"’lm} dt
0

t : . —ab,lm — j
+2—30 / (Ogn H, 00 G051 HsO1m G 5 (Ct) ) [(Off Ok 4 IR et T 4 (el otm 4 comotygdIt
0
HOpm 4 I ONTI R 1 (ol + o T dt) |

which completes the proof.

D Proof of Theorem 2

Recall that N is the number of jumps in C from time 0 to s. Let

L (n) = {’L =k, + 1,]43” —+ 2, e s N(i+5)knAn — N(i—l)k"An = 0} s
L'(n,T) = {i=1,2,....[T/Ay] —5ko+1}0L" (n),
' (nT) = {i=1,2,..[T/A,] -5k, +1}\L" (n).

Denote by @7"™M | @753 and @7 the i summand of Q7°", Q0@ and Q2@ without the
volatility jump truncation, so they satisfy

[T/An]=5kn+1

Qrs:(m) _ Z ~78:(m) -
QT = W 1{AiﬂAi+knﬁAi+2knﬂAi+3kn} for m = 1,2, and 3.
i=kp+1

The same methods as in Theorems B1 and B2 can be used to show

Arv‘S?(m) /\’I‘,S,(m) _
E W AN Ak, Aok, NAiar, } — g Wy = 0,(1) and
€L (n,T) ieL!" (n,T)
~7,5,(m) _
Z wr LfAinAisn, NAiiar, NAise,} = Op (1).
ieL” (n,T)

We conclude that the probability limit of ﬁgls’(m) is the same as ZiEL”(n ) @;S’(m) form=1,2,3.

Using boundedness of the derivatives of H,.,G,, Hs and G4 and Theorem 2.2 in Jacod and Rosenbaum
(2015), one can show that

6 A~T,8 8
973 Z wTa' 7(1) L ETi a(l).
ieL" (n,T)

Next, by equation (3.27) in Jacod and Rosenbaum (2015), we have

3 ~7,5,(3) ~rs, (1) | P s, (3)
20 Z W — Z W — X7 .
i€L" (n,T) ieL" (n,T)

D
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Finally, to show that
1516 9 oS ,(2) ~7,5,(1) 4 ~1,5,(3) P s, (2)
T | X e 3 a5 3 o) L,
i€L (n,T) i€l (n,T) i€l (n,T)

we first observe that the approximation error induced by replacing @” by @," in Theorem 2 is negligible.
For 1 <g,h,a,b,7,k,l,m <dand 1<r s <d, we define

Wi= S (OgnHr0uGr0gn HoOim G ) (CIINI AT ATl Al
i€l (n,T)

G} = (DgnHyOabGr O HyOm G ) (CF YEAT M ATIE NS An | F ),

B(2)} = (Dgn Hr0anGr 0t HyOum Gs) (C ) A NTEN G N — BN, NS [ F),
B(3); = ((OonHy 0 Gr i HoD1n G ) (CF) = (g Hy Dt Gt HoDn G ) (C1) )N NN, NI
Wy = 3 @i(u), u=12,3.

i€L (n,T)

Now, note that we also have Wt" = W(l)%1 + W(2);1 + W(B)? By Taylor expansion and using repeatedly
the boundedness of Cy, we obtain, for i € L” (n,T)

[@(3)7 ] < K TIA I 2k, 17,

which implies E(|@W(3)}|) < KAY* and hence /V[7(3)? 0. Using Cauchy-Schwartz inequality and the
bound E(||A]]|9)F) < KAY* we have E(|@w(2)?]?) < KAZ for i € L” (n,T). Observing furthermore that
W(2)F is Fitrak, —measurable, Lemma B.8 in Ait-Sahalia and Jacod (2014) implies W(?)? =50.

Next, define

4 n,ga ~mn, mn, n,ha n.j n,km T
W' = O Hy0unGr Oy Hedin Gi) (Cy) | 5 = (O - ey el et + el
4 j —n,gh,a 4. o n, " Sy
+ S(Crephn + opr T 4 S(Crg et + oo Ty
4(k721An)*n, h,ab—=mn,jk,lm
+ Tcl—gl Ci—Jl :|a
i€ L (n,T)

Using the cadlag property of ¢ and C, k,+/A, — 0, and the Riemann integral convergence, we conclude that
W2 — Wy where

T
4 o o B m .
We = [ OnH,00G 000G (Co) [ 75 (CECLY + P Cloyci'Clm + ¢ )
0

—gh,ab

dt.

C]k lm]

4 1 1 —gh,a 4 a —Jik,lm
+ (o 4 almefhe v S (el + et opey T + —c
In addition, by Lemma B4, it holds that

E(JW(1)f - W) < AnE< > (A 771-,4;%))-

i€L (n,T)
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Hence, by the third result of Lemma B1 we have W}L LN Wy, from which it follows that

9
46*

—~ 4 . )
[W(l)%ﬂ;z > (OgnHr0aGr0 HoOimGs) (CF)[CF (K, Im) C (gh, ab)]
el (n,T)

- kl > (OgnH,0abG 0k H 01mGs) (C1)CF (gh, ab) A F AT

3
" ieL”(n,T)

2 ~
— =S (OanH 0w GO O G ) (CICE ik, tm) Ao A

" ieL"(n,T)

—gh,ab—jk,lm

—)/ th 0w G (9ij OmG )(Ct)C C; dt.

The result follows from the above convergence, the already invoked symmetry argument, and straightforward
calculations.
E Proofs of Auxiliary Lemmas and Theorems

This section is devoted to the proofs of the auxiliary theorems and lemmas (listed in Section B) that were
used to prove Theorem 1 and Theorem 2.

E.1 Proof of Theorem B1

The proof proceeds in three steps. In Step 1, we prove, for ¢ € L (n,T),
P (4;) < Ka,AZ="===" (E.31)

where a,, is a sequence converging to zero, and A; is the complement of A;. In Step 2, we prove, for p > 1
and i € L (n,T),

E[[0;]"] < KA? 4 Ka, AP =437 (E.32)

Step 3 completes the proof of Theorem Bl. R
Step 1. We now prove equation (E.31). Recall C!™ notation in (A.2). For i € L (n,T),

A !/
p@) = p(|Gn 0|2
N ~ N _ /
< (H itk zek:nH + HCﬁrkn - zian + HC{L,C” - ,—’lan > un)
, !/
® A A u
= F <H M, = G| 2 Qf’) +P (HC?M,L - O, || +||Crk, - G| 2 2") (E.33)

Using standard results in the literature, we have for ¢ > 2 and i € L (n,T),

£

see, for example, equation (3.26) in Jacod and Rosenbaum (2015). Therefore, the first term in (E.33) satisfies,
by Markov’s inequality, for p > 2,

-~ ~ q
ik, £7lan ) < KA, (E.34)

(H e —Cm, H > )gKAf/‘*W'P. (E.35)

By (4.8) in Jacod and Rosenbaum (2013), there exists a sequence of real numbers a,, converging to zero
such that R N
E(||CP — C;™||9) < K,a, A9 H=0 for any ¢ > 1, (E.36)
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where for later use, we note that this result also holds in the presence of volatility jumps. Therefore, the
second term in (E.33) satisfies, by Markov’s inequality,

I
~ =~ ~ =~ U
P (108 O |2, -0 2 %)

1
< —~E (‘
ST

Since @’ < § and by choosing sufficiently large p in (E.35), equations (E.35) and (E.37) give (E.31).
Step 2. We now prove equation (E.32). First, note that for ¢ > 1, by (E.306),

7—

o, — Ot ||+ |G, = C]]) < Kanan=—=". (E.37)

~ q ~ ~
B(C, 1) < Bl - e,

q ~
e .

q} < Kap,AQa-D=+1-a | f¢. (E.38)

By Taylor expansion and H and G having bounded derivatives, for ¢ € L (n,T) and p > 1,

B [|9:]"]
1 ~n ~n 2p 1 ~ 2p
< KkTE HC(i+kn)An — YA, + KWE Hcmn
n n
p/2 Am A P An A P An An/ P P An
< KAJE HC(iJrkn)An —Cia, ‘ + HC(Hkn)An - C(i+kn)AnH + HCiAn —Cia, ‘ + KAJE H iAn
<

KA;;;/Q (Afl/2 + anA$L4p—r)w+1—2p) + KA% [KanA5L4p—r)w+1—2p + K:|
= KA 4 Ka, A= 730

where the third inequality uses (E.38), (E.34) and (E.36).
Step 3. We now complete the proof of Theorem B1l. By the triangle and Cauchy-Schwarz inequalities,

E Z ﬁil{AinAiJrkn}_ Z 9

i€L(n,T) i€L(n,T)
< Z E wi (1{AiﬂAz‘+kn} - 1)‘
i€L(n,T)
< >y \/E|19?|\/P(EUAH-I¢”)
i€L(n,T)
< X VERIP@) +P @A)
i€L(n,T)

< KA (A=) i

N CE)

(anAgfr)w*w/) 1/2

where 4th inequality follows by (E.32) with p = 2, and (E.31). In the above,
/ 1 1 !
l(w,w):—1+§[(8—7“)w—2]—|—5[(2—7‘)@—72].

A straightforward calculation shows that @ > zgjg implies | (w,w’) >

Theorem B1.

1
VRl

which completes the proof of

S-11
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E.2 Proof of Theorem B2

Without loss of generality, we can assume that there is at most one volatility jump in
((i = kn) An, (i + 3ky) Ay] for any i € L(n,T). To study the behavior of ¥;1{,na,,,, } on i € L(n,T),
we will distinguish between two cases, depending on whether or not there is a volatility jump in
(1A, (i + 2k,) Ay]. So define B; as the event that there is a volatility jump in (iA,, (i + 2k,) Ay] (we
omit indexing B; by n for brevity). Denote by B; the complement of B;. Intuitively, for i € L (n,T),
Yil{a,nA.,,, y 18 small because, on the one hand, P (A; N Aiyr,) is small on B;, on the other hand, ¥J; is
small on B;.

We have

E Z Vilganag,,y| =B Z Dilgana,,y + Z Vilganai,}

i€L(n,T) i€L(n,T):B; i€L(n,T):B;
< Z E9il{ainas, 3| + Z E|9ilia,nai, ] (E.40)
i€L(n,T):B; i€L(n,T):B;

where “i € L (n,T) : B;” denotes those terms in L (n,T), for which B; is true.

First, we show that the second term in (E.40) is o, (A}l/4). For i € L (n,T) such that B; if false, we can
use the bound on E [|9;|"] in (E.39) for p > 1. The second term in (E.40) satisfies

Z E |19i1{AiﬁAi+kn}|

i€L(n,T):B;
< ) Epi
iEZ(n,T):Ei
< KA;1/2 (An + Ag;lfr)wf%)

= KA+ KAl=

Theorem 1 assumptions imply (4 —r)w — 1 > %, so the second term in (E.40) is o, (A}/‘l).

The rest of the proof is devoted to showing that the first term in (E.40) is o, (A}/ 4). This will complete

the proof of Theorem B2. B
The first term in (E.40) involves those ¢ € L (n,T), for which B; is true. We will show below that

P(A;NAigr,) < KAY? for i € L(n,T) such that B; holds. (E.41)
We use the following bound in the presence of the volatility jump,

E(|9:]) < Kkip [E Hén p” < kL (anAﬁf”*”W“*f’ + K) : (E.42)

Ky,

p An
} +E Hci-‘rkn

where the first inequality uses Taylor expansion and bounded derivatives of H and G, and the last transition
uses (E.38).
The first term in (E.40) satisfies, for p > 1, by Holder inequality, (E.41) and (E.42),

Z E |'l9i1{AiﬁAi+kn}|

i€L(n,T):B;

Y (E [19: PP (P (A; 0 Agyp, ) PD/P

i€L(n,T):B;

IN
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IN

> K [An x (Agfp—r)wﬂ—p + 1)}1/]0 [A}Z/Q} Wbl
i€L(n,T):B;

- Y KA,

i€L(n,T):B;

Since the number of terms in L (n,T) is bounded by Kk, (k, arises due to overlapping blocks defining
9;), the first term in (E.40) is o, (A}LM) if | (r,w) > 3. To study I (r, @), we distinguish two cases, depending
on whether (2p —r)w + 1 —p > 0 holds.

Case 1. When 2p—r)w+1—p>0,1(r,w) = ﬁ(p—&— 1), s0 l(r,w) > % ifp<2.

Case 2. When 2p—r)w+1—-p <0, (r,w) = %((2p—r)w—|— 1—p)+ pQ—_pl. We have [ (r,@) > 3 if
w > 45’2’; :6T). This is satisfied if we choose, for example, p = 1.5.

The last step in the proof of Theorem B2 is to show that (E.41) is true. In order to do that, we first
prove that if there is a volatility jump on (iA,, (i + k,) A,], then

P (H Crk, — AZZI%H < u;) = 0p (A}/“) . (E.43)

Denote by S the time of the volatility jump on (1A, (i + kn) Ay, so the jump is ACg. Denote §,, =
C’fg_k - r, —ACs, so C’H_k - k, = ACs +¢&,. We know §,, = 0, (1). We know that there exists e,

independent of i or S, such that [|AC|| > e.
We will first show that if there is a volatility jump on (iA,, (i + k,) A,], for s > 0, it follows that

P (|G, = G, || < un) < (Ot ~ O, —acs]) (E.44)
noo_ < . .
itkn kn un = (6/2)

To prove (E.44), note that the reverse triangle inequality gives ‘@’j_kn —af_an = ||AC+&,|l

ACT = l[€,1l]. Thus,

n An /
itkn Czean < Un)

P(le

PIAC] = (1§l < )

< P(l&d>5).

where the second inequality follows by distinguishing two cases, depending on whether [|AC|| > ||€,,||. Case
LA JAC] = (1€, [l {ITAC] = 1€l < un} = {IAC] = [[§,]l < up} = {IAC] —u;, <€, 11}, so we deduce
{e—ul, <||€,||}. For n large enough, this implies {||£,| > §} since u], — 0. Case 2: if [|AC|| < [|&, ]I,
we have P ({[[|AC] — [, ]Il < up,} V{IACI < [I€,11}) < P (6,11 > [AC]) < P([l€,] > €) < P ([I,]l > 5)-
Finally, (E.44) follows by Markov’s inequality.

IN

A

By (E.44), we obtain, for s > 2,

)

N ke (|G, - Cs

(R oy g e

KE (Hé;zkn s

A

IN

) . (E45)

The first term in (E.45) satisfies, for s > 2, by (E.36) and (E.49)

Bl o) = mp(jors -ae ) < xe (e, o)
< annAsL2sfr)w+lfs +KAZ/4
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The second term in (E.45) has the same bound by the same arguments as the first term. Choosing s = 2 in
the above, and taking into account that (2 —r)w > % and w > %, we obtain (E.43).

Given (E.43), it is simple to obtain (E.41) as follows. By (E.43), if there is a jump on (iA,, (i + k) A,],

we know P (A;) = o, (Ai/4)7 thus (A; N Aiqg,) < P(A;) =0, (A}l/4). Applying (E.43) with i+ k,, instead

of 4, if there is a jump on ((i + kn) Ap, (i + 2k,) An], P(Aitr,) = 0p (A}L/4>. Thus, P (A; N Aiyg,) <
P (Aitr,) = op (A}LM). We conclude that if there is a jump on (A, (i + 2k,) A,], i.e., event B; is true,
then (A; N Aivg,) < P(Aitr,) = 0p (A}/‘l). This concludes the proof of (E.41) and hence Theorem B2.

E.3 Proof of Theorem B3
To show this result, let us define the functions

d

R(x,y) = Z (athaabg) (m)(ygh _ Igh) (yab _ xab)

g,h,a,b=1

S(a.y) = (H(y) - H@)) (Gy) - G(@))

U(z) = zd: (aqhHaabG) (x)(xgaxhb_i_xgbxha),

g,h,a,b=1

for any R? x R? matrices « and y. The following decompositions hold,

Z 9AN _ Z JAN

1€L(n,T) 1€L(n,T)
3 ~ o~ ~/ 7 2 -~ !
=3 > [(8Cr.Cry) = S(CC) — - (UE = UEm) ],
" ieL(n,T) n
Z ﬁl_LIN _ Z ﬂgLIN
i€L(n,T) i€L(n,T)
3 ~ ~ -~ ~ 2 ) sl
=5 > [(R@Cr) — REM.CL,) — - (UE - UEM)].
" ieL(n,T) n

Since H and G are three times continuously differentiable with bounded derivatives, the functions R and S
are continuously differentiable and satisfy

|l0J(z,y)] < K for Je{S,R}, (E.46)
[oU(@)| < K, (E.A7)
where 0J (respectively, OU) is a vector that collects the first order partial derivatives of the function .J

(respectively, U) with respect to all the elements of (z,y) (respectively, x). Using the Taylor expansion,
(E.46) and (E.47), it holds that, for J € {5, R},

J(Cr,Cl ) — J(C Gt ) < K(|ICF = || + (ICFy ., — Cilt, 1) and
U(CP) —U(CM)| < K(|CF — C7|).

By equation (E.36), the following condition is sufficient for Theorem B3 to hold:

3

2 ) — 2 >0.
(2-r)w 4_0



The above condition follows from our assumptions of Theorem 1. Using the fact that 0 < w < 5 , we can
see that Theorem B3 holds when 3/4(2 —r) < w < 7, which completes the proof.

E.4 Proof of Theorem B4
Note that we have

> o= Y 9 = Z > ilg.hab),

i€L(n,T) 1€L(n,T) " g,h,a,b=1 i€L(n,T)
d
3 n n,a
S Y e = S (e Y @HaMG) N A,
ieL(n,T) i€L(n,T) " ieL(n,T) g,h,a,b=1

with
U7 (9,hy0,8) = (0 HOWG) (C") = (O HOuG) (CI) AT AT,
X = (@) — HEM) (G(C,) — GIEM).

By Taylor expansion, we have

(051506 G) (Ci™) = (pnS0uG) (CT) = (amy 1 S0unG + D2, abGaghS)(Cn) nay

z,y=1
+ % > (0ot S0nG + 02, SO G+ By GO + 02, GO 1S ) @ V"
7,k,z,y=1
and
S(A;Jrk Zaghs (CHA ’gh + Z kghg (CMA ,ghl/:r Jk
7,k,g9,h

+5 D 02, g S(CIAPINY +1 5 D Oy kSOOI AN
©,y,9:h ©,Y,5,k,9,h

1 n,S\\n,jkyn,gh \n,x
+2 D Oy nS(CI2)NIENT IR\,

J.k.x,y,9:h

for S € {H,G}, & = 7CP + (1 —m)C;", CFF = wgCi 4+ (1 — ws)City . CCPS = pgCP + (1 — pg)Cm
for m,mp, g e, e € [0, 1]. Although ¢ and 7 depend on g, h, a, and b, we do not emphasize this in our
notation to simplify the exposition.

By (4.10) in Jacod and Rosenbaum (2013) we have

]E( Q@
Combining (E.48), (A.4), (B.14) with Z = C and the Holder inequality yields for ¢ > 2, for i € L (n,T)

&

The bound in the first equation of (E.49) is tighter than that in (4.11) of Jacod and Rosenbaum (2015)
due to the absence of volatility jumps. This tighter bound will be useful later in deriving the asymptotic

ki —1
q
E a?ﬂ‘ ‘f(i,l)An) < K ALKY? for g > 2. (E.48)
Jj=0

q
‘]:(i—l)An) < K AL for all ¢ > 0 and IE(

nq
v

! ]:(ifl)A”) < Kqu/4. (E.49)

]:(ifl)A”) < Kqu/4, and E(‘

A7
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distribution for the approximated estimator. By the boundedness of C; and the derivatives of H and G,

e

Jjk,zy,a

bGOgr H + 02, ) HO?, G (€ VT ENIRNT 0| < Ko 2] A7 2. (E.50)

zY,9

Using the Taylor expansion, we have

X = Y (O HOwG)(CIA A =

g,h,a,b
1 .

Y OnHOy G + OGOy oy H)(CPY N 4 Sv N AT 7, and

g,h,a,b,j,k
> (OnHOwG) (C;") — (9gn HOuG) (CF) =

g,h,a,b

> (OgnHOZ )G + 0G0y, 1, G)(CTY NN 4 57
g,h,a,b,x,y

with E(|¢7||F") < KA, and E(|67||F") < KA, which follow by the Cauchy-Schwartz inequality together
with equation (E.49). Given that k, = 0(A,)~'/2, the previous inequalities imply

3A;1/4 3A;1/4
ok Z @?%O and ok Z 5?:P>0.
™ ieL(n,T) ™ ieL(n,T)
Therefore, it suffices to show that

3A;1/4 2 2 ny\n,gh \n,abyn,jk P

o ST OgnH G+ 0 HOG 1, G)(CIINDADENITE =50, (E.51)
" ieL(n,T) g,h,ab,5.k

3A;1/4 2 2 ny, n,ghyn,abyn,jk P

ST Y (OgnH G A+ OgnHOG, G)(ClHImNPPOARE = 0. (E.52)

™ ieL(n,T) g,h,a,b,5,k

These results hold by the bounds in Lemma B5.

E.5 Proof of Theorem B5

In Section E.5, to simplify the notational burden, we adopt the following strategy. Instead of studying

ZieL(mT) 19§A), we work with all indices 1, i.e., Zgﬁﬁf{gk"ﬂ 195’4)

, together with the assumption that there
are no volatility jumps. The difference between the two quantities is o, (A}/ 4) because in the absence of

volatility jumps, 19§A) satisfies the bound in equation (E.39). Recall the decomposition from from B.13,

9 — gAD _ ga2) (E.53)

%

Given the boundedness of the derivatives of H and G and the fact that k, = 0(A,)~/2, by Theorem
2.2 in Jacod and Rosenbaum (2015) we have

VA, 6>

i=knp+1 g,h,a,b=1

1 [T/ An]—3kn+1 3 d T
( S-Sy /0 (8th8abG)(Ct)(C’f“Cthb+Cfb0th“)dt>Op(l),

S-16



which yields

1 [T/An]_g’kn +1
1/4< oo - Z / (O HOwG) (Cy) (CPCPY +C’9bCh“)dt) 0.
Ay i=kn+1 9 g,h,a,b=1

Using the multivariate quantities defined in Section A, we can show that the following decompositions hold:

1 kn—1 2 1 2%, —1 2
— ~/ o~/
G =0yt D DBy, Gy, =G = >0 D ey,
i j=0 u=1 i j=0 wu=1
1 2 2 2k, —1
,gh b ,gh ,ab
NN = ) ( e(u)}e(v) ¢ ()1 ¢ (v) e
n yu=1v=1 j=
2k, —2 2k, —1 2y —1 j—1
s h b 1, gh ,ab
F0D A+ Y S e <<v>;:;).
7=0 gq=5+1 j=1 ¢=0

Changing the order of the summation in the last term yields

1 2 2 2k, —1
NN = 15 D00 ( > elw)e(o)FC(u)i )y

2
k” u=1v=1 7=0
2k, —2 2k, —1 2k —2 2ky —1
n n n gh n ,ab n,ab n,gh
+ D > e @y + 3o D e)ie(wiC@)ET iy
j=0 g=j+1 J=0 g¢=j+1
. T/An]=3kn+1 g(Al)
Therefore, we can further rewrite ZE /k +}1 a 19( as

[T/An]—3kn+1

Z 19l(m)_ Z 19A11+ Z 19(A12)+ Z 19A13 with

i=kn+1 i€L(n,T) 1€L(n,T) i€L(n,T)
[T/An]—3kn+1 d 2
Z ﬁgmw) = Z Z A/ﬂu(H, gh,u; Gyab,v)}, w=1,2,3,
i=kp+1 g,h,a,b=1u,v=1

where

(T/An]—3kn+1 2k, —1

11 T 3 n,gh n,ab
All(H,gh,u;G,ab,v)%:% > Z (Ogn HOwbG) (CF- 1 )e(u) e (0) 7 ¢ (w) 5 ¢ ()1
i=kn,+1 7=0

3 [T/An]—3kn+1 2k, —2 2k,
119 n n n ,gh ,ab
A12(H, gh, w; G, ab,v)f = oz Z > Z Dgn HOabG) (C)e(u) e (v)p ¢ (u) 55 C(v)

n =kn+1 J=0 g=j+1

[T/An] 3kn+1 2k, —2 2k, —1

Y D (OgnHOwG) (G )e(v)fe(w)y (o) C(u)s

i=kn+1 =0 q=j+1

A13(H gh,u; G, ab,v)T 2k3

where we clearly have Zl\3(H, gh,u;G,ab,v)} = A12 12(G, ab,v; H, gh,u)%}. By a change of the order of the

summation,

[1/An]  (2ka—1AG-1)

— 3
Al11(H, gh,u; G,ab,v)} = — Z Z (Ogn HOuwG)
"=1 j=0V(i+2kn—1—[T/An))
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X (O j_y)e(w)fe(v) ¢ (w) " (o),

[T/An] (i—1)A(2kn—1)  (2kn—m—1)A(i—m—1)

3
A12(H, gh, u; G, ab, v) =253 > Z - > (Ogn HOubG)(Ci1_j 1)
i=2 J=0V(i4+2kn—1—m—[T/A,])

X 5(“)?5(0)j+m<gh(u)i—mcab(”)?~

Now, set

3 [T/An]=kn 2k, —1
n,gh n,ab
7 2 2 OHOuG)CL =@ W)™,
1=3kn Jj=
3 [T/An]—kn (i—1)A(2kp—1) (2kn—m—1)

A12(H gh,u; G, ab,v)7. 2k3 Z Z Z (OgnHOuG)(CF —j—1— m)E(“)?E(U);‘L-rm

i=3kn m=1 7=0
X Cgh(u)?fmgab(v)?'

We show below that the following results hold:

;1\1/1(H,gh,u; G,ab,v)7} =

1
A1/4 (Alw(H gh,u; G, ab,v)} — Alw(H, gh, u; G, ab, v)% ) 50 (E.54)

P
A1/4 (Alw(H gh,u; G ab,v)} — Alw(H, gh,u; G, ab, v)} ) —0 (E.55)

for all (H,gh,u,G,ab,v) and w=1,2.

E.5.1 Proof of Equation (E.54) for w =1

To prove this result, first, notice that the ¢(u);"? h( (v)?’ab are scaled by random variables rather that constant
real numbers. Next, observe that we can write

AT1 — ATl = ATL(1) + ATL(2) + A1L(3)  with
o (2kn—1)A[T/AL] 3 (2kn —1)A(i—1)
Ay = > ( 7 > (Ogn HOwG)(CF 1>e<u)?e(v)§> C(u) 9" ¢ (v) e,

=1 " =0V (i+2k, —1—[T/A,])
. (T/AR] 3 (2kn—1)A(i—1)
A11(2) = > %3( > (Ogn HOabG)(C}" ;1 )e(u)e(v)}
i=[T/Ap]=2kn+2 " \j=0V(i+2k,—1—[T/A,])
(2kn—1)
— 3 (O HOWG) (P 1>s<u>?s<v>;><<u>:-“ghc<w>?’“b7
=0
— [T/ AR]—2kn+1 3 (2kn—1)A(i—1)
AE) = Y 2k3< > (Ogn HOupG)(CF;_1)e(u)je(v)}
=2k, N\ =0V (i4+2kn—1—[T/AL])
(2kn,—1)
— S (OpnHOWG)(CF_y)e(u >?s<v>;><(u)?’gh<<v>?7“”.
=0

It is easy to see that 1?1\2(3) = 0. Using equation (B.14) with Z = ¢ and equation (E.48), we obtain
E(ICFIF) < Koy E(ICE)TIIFL) < KA82 (E.56)

By the Dboundedness of the derivatives of H and G, the random  quantities
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kp— i— n n n
(% Zﬁ-iov(%infi,pmn]) (Ogn H O G)(C7 ;1 )e(u)je(v)] ) and

7o Zgikgl_l)(8g;LH8abG)(C’[Lj71)6(u)?5(v)§‘ are F' ;— measurable and are bounded by X:U defined as
K if (u,v) = (2,2)
Mow = K/kn if (u,0) = (1,2),(2,1)
K/k? if (u,v) = (1,1).

Similarly, the quantity

3 2k, —1)A(i—1) (2k,,—1)
2kg< Z (ath&le)(Cin—j—l)E(U)?E(U);‘L - Z (OgnHOupG)( ?jl)d“)?d“)?)v
N\ =0V (i4+2kn—1—[T/AL]) j=0

is F* ;— measurable and bounded by QXZ,,U. Note also that, by equation (E.56) and the Cauchy Schwartz
inequality, we have

E(¢ ()" ()| FFy) < B(IC)FIPIF) I ()7 |17 )

KA, if (u,v) =(2,2)
<SS KAY? it (u,0) = (1,2), (2,1)
K if (u,v) = (1,1).

The above bounds, together with the fact that k,, = N imply IE(|ZI\1(1)|) < KAY? and E(|Zl\1(2)|) <

KAY? for all (u,v). These two results together imply Zl\l(l) = O(A;1/4) and 21\1(2) = O(A;1/4)7 which

yields the result.

E.5.2 Proof of Equation (E.54) for w =2

First, observe that A12 — A12 = 21\2(1) + 21\2(2), with

. 2kn—1DA[T/AL] 7 (i—1) 3 (2kn—m—1)A(i—m—1)
=y ( > > (O HOubG) (Cls ) ()2(0) )
i=2 m=1 """ =0V(i+2kn,—1—m—[T/A,])

X Cgh(u)?—m> Cab(v)?a

— [T/AR] (i—1)A(2kn—1) 5 (2kp—m—1)A(i—m—1)
m(Q) = ( Z (ﬁ Z (athaabG)(Cznflfjfm)g(u)?
i=(T/An)—2kn+2 m=1 =0V (i+2kn—1—-m—[T/A])
(2kp,—m—1)
X EWm) = Y <athaabG><C?1jm>s<u>ys<v>?+m)<gh<u>?m> Cap(0)?-
j=0

Notice that the quantity

(2kn—m—1)A(t—m—1)

m,n 3 n n n
ki = ﬁ( Z (OgnHOap G)( i—1—j—m)5(u)j5(1’)j+m)
=0V (i4+2k, —1—m—[T/AL])
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is F;* ,,_1 measurable and bounded by sz Let

- (2ky,—m—1)A(i—m—1)

Z o 3 (O HOabG) (Clr ) () 2(0) e ) Con ()i

m=1 " J=0V (i+2ky—1—m—[T/A,])

It follows that 7' is F;* ;-measurable and we have

~n

)

KvA, ifu=1
KA, ifu=2"

E(|s{""|*|Fo)

IN

E(C(w)i | Fiem-1)| <

K, ifu=1
E ® | Fieme1) < . .
(HC(u)zme | 1) {KzAn/2 ifu=2

Using Lemma B3, we deduce that for z > 2,

E(W ") < K.(\ )7k ifu=1_ K. /kn % ifo=1
K, ~n’ .
TSRO )R fu=2" | K.k ifu=2

uﬂ))

Using the above result, we obtain 1/4 A12( ) £ 0. A similar argument yields ﬁf@(z) £ 0, which
Ay
completes the proof of the equation (E 54) for w = 2.

E.5.3 Proof of Equation (E.55) for w =1
Define

2k, —1
O, )" = o Z (O HOWG)(CIy 1) = (On HOWG)(Clly, ) )eu)e(v);-

By Taylor expansion, boundedness of the derivatives of H and G, and using (B.14) with Z = ¢, we have

’E( Ogn HOwbG)(CP ;1) — (Dgh HOuwG) (CL gy )| F 7o, )‘ < K(koAy) < KA,
E(|(0gn HOabG)(CP- ;1) = (Ogn HOabG) (CF o, )| F 7 ar, )| < K (kn,)?? < KA,

for ¢ > 2 and for j = O ,2k, — 1. Next, observe that ©(u, v)(c)’i’" is F;', -measurable and sat-

isfies [©(u,0)g”"" < X, |E( (1,00, )| < KAYR,, and E(10(u, o) 1| 7Ly, ) <

KqA%/ 4(XZ’U)’1 where the latter follows from the Holder inequality. We aim to prove that

(T/Aq]
e C),in n,a
E:T4 > 0w v) " (u )x%(v);b]
” =2k,

converges to zero in probability for any H, G, g, h, a, and b with u,v =1, 2.
To show this result, we first introduce the following quantities:

(T/An]=kn

Em:l[ ST 0u o) EC ()] (0) | n]

1/4
Ay i=3kn,
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(T/An]—=kn

S 0w u) (W) = B ()] () F) |

=3k,

=~ 1
B@2)= ——
) A}/4

with E = E (1) + E (2). By Cauchy-Schwartz inequality, we have

K if (u,v) = (1,1)
E(IC(w) " ()7 "|) < (\,,0)"2 where Ay, = § KA, if (u,0) = (1,2), (2,1)
KAZ if (u,v) = (2,2)

Since ¢(u)!""¢(v)*" is FP-measurable,

the martingale property of ¢(u)!9"¢(v)* — E(¢(u)"¢(v)*|F ;) implies, for all (u,v),

?

E(|E( )| )<KA 3/2(A1/4>‘u 11) )‘ u,v S KATL

The latter inequality implies £(2) = 0 for all (u,v). It remains to show that £(1) £ 0.
Here, we recall some bounds under Assumption 2,

E(C(1);"¢(2)7 | Fy)| < KAy,
BT C)PIFL) = (CR"CRY + O] < KA,
()@ IFy = T Au)| < KAV (VAL + 7).
Case (u,v) € {(1,2),(2,1)}. By equation (E.57) we have
~ T f P
IE(|E(1)\)<KA—A1/4(A1/4>\ A,) < KAY? so E(1) = 0.
Case (u,v) € {(1,1),(2,2)}. Set
1 -[T/An]_k .
E)=—7| Y 0w vy,
An L i=3kn
[T/ An)kn ‘
E'0)=—7| X Owu) (v - Vi)
An L =3k,
1 r[T/ A
E"(1) = —7 S 6wy 5 (B @ o) | Fy) = Vit )
A" L  i=3kn
where
craeemtt 4 et it (u,v) = (2,2)
Vit = ﬁiglh abAn if (u,v) = (1,1)

0 otherwise

(E.57)
(E.58)
(E.59)

Note that we have E(1) = E'(1) + E”(1) + E””(1). Using equations (E.58) and (E.59), it can be shown that

VA (u,0) = (1,1
VA i (u

K dm (AN,
R(E" (1)) < { A e
(B0 < {2 ezt

u,v
n

)
< KAY? in all cases.

0) = (2,
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Next, we prove E’(l) £ 0. To this end, write

B =—qm| 2 O,

i=1

1 [T/A,]—2k,+1
AL/A [

Using the F7 o, _,-measurability of the last sum, we are able to show

[T/A]—3kn+1

%/4 IE(@(u,v)f)c)’i_l“k"’"v;”1Ji-"1)|] 20 and
Ay i=kn+1
2kn —9 [T/An]—3kn+1 S
F Z E(|@(u, V) a mnviil)|2)‘| = 0.
n i=kn,+1

The first result readily follows from the inequality

KAYPN,,  if (u0) = (1,1)

KAYSE AL . 0) < KAY? in all cases,
n woBn LU,V

C)i—142kn ,nyn n
E(O(u, v){ vi_1|fi_1>|s{

while the second is a direct consequence of

. KA )2 it = (1,1 ;
]E(\@(u,v)(c)’z TH2knmyn 1) < ( %’”) if (u,0) = (1,1) < KA%? in all cases.
° o KA2 (X002 if (u,0) = (2,2) "

Finally, to prove that £”(1) =5 0, we use the fact that

C),i,m y n C),i,n n
E(10(u, 0) 5™ (Vi) = Vi o)) < E(1O(u, o) " YVZE([VE ) — Vi, )Y

KAV if (u,v) = (1,1)
= 1/477 /4 . )
KA N,y An AR if (u,v) = (2,2)
which follows from the Cauchy-Schwartz inequality and earlier bounds. In particular, successive conditioning

together with Assumption 2 imply that for (u,v) = (1,1) and (2,2),
(Vi = Vi, [?) < A2

E.5.4 Proof of Equation (E.55) for w =2

Our aim here is to show that

B2) =

7 S (5 S [OnHOWG)CE 1) = O HOWG)(Cl oy, ))2(@)=(0)] ) X
n 1=3knp,

n

[T/An]_kn<2kn1 3 2k, —m—1

m=1 §=0

<<u>?%> ()P = 0.

For this purpose, we introduce some new notation. For any 0 < m < 2k, — 1, set

3 2k, —m—1

@(u,v)ﬁf)”””:ﬁ Y [OnHIWG) O 1) = (OgnHOuG) (CFlay, ) e()Fe(0)
2k, —1

pluy0) D = 3 T O, v) ")
m=1
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(©)im 4o Fim

It is easy to see that ©(u,v)m _, measurable and satisfies, by Holder inequality,

~n
< )‘u,v

|®(U U)(C) ,i,n

and E(|O(u,v) 9 Fr,, ) < K,AY* e
m 1—2ky, U,v

Lemma B3 implies that for ¢ > 2,

i K(A1/4>\ DY ifu=1  [K,/ k2 ifv=1
E(|p(u, v)( b1y < AT Nk it — o SV gt ife—d” (E.60)
(AN, ) kT ifu =2 Kki  ifv=2
Set
| /A k
E@)=—7 >, pluo) 0B (o) FL),
Ax i=3k,
[T/ An]~Fn
BQ= 1 D plun) O G~ B
n 1=3kp,

The martingale increments property implies E(|E” 2)%) < K A? in all the cases, which in turn implies

E"(2) = 0. Next, using the bounds on p(u, v)(©@)4m9% we obtain that E’(2) = 0.
We refer to Jacod and Rosenbaum (2015) for the proofs of Lemma B1 and Lemma B2.

E.6 Proof of Lemma B3
Set
€ =P (¢, &N = E(E|FR ) = Bep 1 (MFR L) = P E(CHFR,), and €™ =€ — €&

Given that [|E(C]|F™ )] < L', we have ||£Z"|| < L'|¢? 4]. By the convexity of the function x%, which holds
for ¢ > 2, we have

2k, —1 2k, —1 2kp,—1

1Y el < k(IS elr+ 1 Y &),
Jj=1 j=1 j=1

Therefore, on the one hand we have

2k, —1 2k, —1 2k, —1
’ _ ’ _
1Y &t < Kki™h D0 65,17 < KR Y oyl
j=1 j=1 j=1

which by E( I 117|772y ) < L, satisfies

2k, —1 2k, —1
|| Z §Z+j|| | 1 <Kqukq ! Z E |<ID’L+j 1‘ |]:'n )<KL/Qk.;ILLq.
j=1

On the other hand, we have E(||§;lfj|\ |.7-"” 1) < E(E819F ) < LgL? and ]E(g;fj\}”f_l) = 0, where the

first inequality is a consequence of IE(||§H_3H |Fi) < E>IE 197 ,) < LgL%, which follows from the
Jensen’s inequality and the law of iterated expectatlons Hence, by Lemma B.2 of Ait-Sahalia and Jacod
(2014) we have

2k, —1
E( Y &I10F ) < K LOLgkY?.
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To see the latter, we first prove that the required condition IE(H§7-L||q|fZ-"_1) < LyL?) in the Lemma B.2 of
Ait-Sahalia and Jacod (2014) can be replaced by E(||& (|7 FfL;) < LgL?) for 1 < j < 2k, — 1 without
altering the result.

E.7 Proof of Lemma B4

We use i € L (n,T) throughout the proof of Lemma B4. We use the terminology “successive conditioning”
to refer to either of the following two equalities,

T1y1 — Toyo = Zo(y1 — o) + Yo(r1 — 20) + (21 — 20)(y1 — Yo),
T1y121 — ToYoZo = Toyo(z1 — 20) + To2o(y1 — Yo) + Yozo(21 — wo) + o(yo — y1)(20 — 21)
+yo(zo — 1) (20 — 21) + 20(x0 — 1) (Yo — y1) + (1 — 20)(y1 — ¥0)(21 — 20),
which hold for any real numbers zq, yo, 20, xl, yl, and z1.

To prove Lemma B4, we first note that )\"’J AL mis Fn 1 o1, -measurable. Therefore, by the law of iterated
expectations, we have
3 1 3

n,jkyn,lmyn,gh nab n\ _ n,jkyn,lm n,gh nab n
E(Az A; )\i+2k i+2ky, |‘7: ) - <>\ Ai E(AH—an z+2kn| i+2ky, )|‘7:l )

By equation (3.27) in Jacod and Rosenbaum (2015), we have

2 2kn Ay —n,gh,ab
n,gh n,ab n n,ga n,hb n,gb n,ha n=n ~n,90,
BNk, Aok, [ Fiver,) — A — (O, Ciliar, +Ciy., Cilion,) — 5 Citon, |
< Kv/AL (AL + Nit2k, 2k, ), and
n,j n,lm 2 n,j n,km n,jm —~n anAn*m jk,im n
BTN FD) = (GO 4 OO M) — S O < KV AR (A e, ).
From the above, it follows that
. 2 2kn, Ay —n,gh,ab
n,jkyn,lm n,gh n,ab n n,ga n,hb n,gb n,ha nean »gh,a n
|E()‘i oy [E(Al-s-g% Aok, hok,) — k—(Ci+92k Ciiok, +Ci+g2knci+2kn) T3 Citok, } F >|
n

< VARE(NEIINT ALY + 0o, k)] PV | Vo)

+ K/ ALE(AF A

1)< KGNS i),

where the last inequality follows from Lemma B1. -
Now, using equation (B.14) successively with Z = C and Z = C (recall that the latter holds under Assump-
tion 2), together with the successive conditioning, we also have

; 2kn Ay —n,gh,a 2
BN N [ (Clt, Ciio, + Clhe, Clin, )+ TS T — 2 (Cponepht 4 opohephe)

2]€3An5nghab:|‘]__n>| < KA, A1/4

|E ()\Zl,jk‘)\’;l,lm |:k7 (C;n,gaczz,hb + Cz_n,gbcin,ha)

2knAn%, ,a 2 n.j n.km n.im ~n 2knAn—n, Im
+ Cz o b:| - [?(Cl JlCi * + Cz 7 Cz 7kl) + Cz T i|
n

3 3
2 2knAn—=n,gh,a
x [ (Crooptt e epte) + SRR T | Fr )| < KAWL + i, ).
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The result derives from the last inequality.

E.8 Proof of Lemma B5
E.8.1 Proof of Equation (B.16) in Lemma B5

We start by obtaining some useful bounds for some important quantities. First, using the second statement
in Lemma B2 applied to Z = Y”, we have

B FTy)] < KAY (VA +ny). (E.61)
Second, by repeated application of the Cauchy-Schwartz inequality and making use of the third and last
statements in Lemma B2 as well as equation (B.14) with Z = C, it can be shown that

E(a}

(3

Mot Fry) - a2 (epdtoptn - epim et | < K2, (E.62)

Next, by successive conditioning and using the bound in equation (B.14) for Z = C' as well as equations
(E.61) and (E.62), we have for 0 < u < k,, —

[EBagtarmF) - A (epdleprtn 4 erimeptt)| < KAy, (E.64)

n,jk_n,m_n,gh

To prove equation (B.16), we first observe that v;"’"v;""" 19" can be decomposed as

1 kn—1 kn—2 kn,—1
,jk: nlm n,gh ,jk} nlm ngh ,jk} nlm n,gh n,gh ~n,jk ~n,lm
v; kg A3 C Cz K k3 A3 z K 1 v z U + C Cz,v Ci,v
n u=0 n u=0 v=u+1
n,lm ~n,gh ~n,jk z : z : n]k n,lm ngh n,gh ~n,jk ~n,lm n,dm ~n,gh ~n,jk
+ Ci,u Ci,v Ci,v :| k?, A3 7,u z u z v + C Cz u Cz v + < gz u Cz v
u=0 v=u+1

kn—38 kn—2 k,—1
,Jk n,lm n,gh n,jk ~n,gh ~n,lm n,dm ~n,jk ~n,gh n,lm ~n,gh ~n,jk
k3 Ad Z Z Z |: 7, z K 7, ,w + C Cz,v Ci,w + C Cz KJ C'L,w + C Cz,v Ci,w

u=0 v=u+1w=v+1
n,gh ~n,lm ~n,jk n,gh ~n,jk ~n,Im
+ ( Cz,v Ci,w + C Cz,’u Ci,w :| ’

with (7', = af, + (CF, — CF") Ay, which satisfies E(||¢,,[|7|F] ) < KA for ¢ > 2.
Set

kn—1 -2 kp—1
é— 2 : C ,]k n, lm n,gh é— 2 : 2 : C ,]k n, lm n,gh
i 3A3 z u % 3A3 z v
k n u=0 k n u=0 v=u+1
—2 kn,—1 kn—3 kn—2 k,—1
n jk‘ n, lm n,gh n jk‘ n, lm 7gh
&' (3 k;3A3 E: }: Ciu Cin  and &'(4 k3A3 §: E: E: Cii :
u=0 v=u+1 u=0 v=u+1w=v+1

The following bounds complete the proof of equation (B.16),

B (DFL)| < KA (E.65)
B (2)|FL1)] < KA, (E.66)
B (3)FL) < KA, (E.67)
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B (OIF)] < KAV A + ;) (E.68)

These bounds are proved below.

Proof of Equation (E.65)

The result readily follows from an application of the Cauchy Schwartz inequality coupled
with the bound E(|[¢7,,[|7|F,) < KA for ¢ > 2.
Proof of Equation (E.66)

Using the law of iterated expectation, we have, for u < v,
n,jk ~n,lm ~n,gh n,jk n,lm ~n,gh n
E( H—ju <i+u Ci+gv |~7'711) = E(QJFJUE(CHU <¢+gv | i+u+1)‘~7:7;711)- (E.69)
By successive conditioning, equation (E.62), and the Cauchy-Schwartz inequality, we also
have

(G G ) = Al Ol Ol Ol ) = AR(CL = O ") (G =G < KA.

1,0 2,0 1+u+1~14+u+1 i+u+1 % i+u+1 A

Given that E(|¢}7F 7| Fr,) < A%, the approximation error involved in replacing
B(C G [P ) by

AZ(CRS L CRntty + CF Ot ) + AL(CRS! = G (G, — CF'™) inequation (12.69)
is smaller than An/?.

We can also easily show that
B0 (i — CRAMIFL D] < KAYR(V By + 1. (E.70)

Since (CF., — CF) is FJ',-measurable, we use the successive conditioning, the Cauchy-
Schwartz inequality, equation (E.61), equation (E.62), and the fifth statement in Lemma
B2 applied to Z = ¢ to obtain

[E(af o (Crm — O™ (CR2F — CPRYFry)| < KAY?
E(afZfalm(Orah — M| Fry)| < KAY? (ET1)
) 7 7 ’anfl)‘ S KATL

E((CH = ™G — Crm)(Crs — o)
(

The following inequalities can be established using equation (E.61), the successive condition-
ing together with equation (B.14) for Z = C,

n,jk n,lg n,mh n,lh n,mg 3/2
)]E(Oéi—l—u (Ci+u+1 i+u+1 + Ci+u+1Ci+u+1) ’f:il) < KAn

n,jk n,jk n,lg n,mh n,lh n,mg 1/2
‘E<(Oi+u - Oi )(Oi+u+10i+u+l + Ci+u+lOi+u+l) |}—zn—1> < KAn

‘E(a?ﬁf(Cﬁiﬁl — CPM(CR = CM™IFR)| < KAP(VAL+ )
The last three inequalities together yield [E(£F(2)|F™ )| < KA,.

Proof of Equation (E.67)
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First, note that, for u < v, we have

Jk n,lm ,gh n gk ~nm ,gh n
(Cz—i-]u <i+u z—lgu "F ) = (Cz—i-]u Cz—l—u ]E( z—i—%) |'F;n+u |‘F (E72)
By successive conditioning and equation (E.61), we have
gh /N
| ( z+gw |‘/—-;n+v)| < KAS/Q + 771+v+1 w— v) (E73)

Using the first statement of Lemma applied to Z = C, it can be shown that

[E((CH = CRADIFL) = An(w —v = DB,
S K( — U= 1>Anni+v+l,w—v S KArll 27]i+v+1,w—v'

The last two inequalities together imply

(7 = (Gl = CrM A, = A2w — v = DE, | < KAV By + g ms)
(E.74)

Since E(|§"Jk| |F ) < A% the error induced by replacing E(¢ Zjiﬂ]—"{iu) by (C’fﬂjﬁrl -

CMMA, + A2 (w — v — 1)szrgerl in equation (E.72) is smaller that A%/2.

Using Cauchy Schwartz inequality, successive conditioning, equation (E.71), equation (B.14)

for Z = C and the boundedness of Et and C; we obtain

E(argbartn(Crtte = CPMIFLL )| < KAy
B (e | F 1) < KA

B (ol (Cr = O (Citha = CRMIFL )| € KA AY(VBy + i)
E(apdiCrtr — et FL )| < Al
E((Crk - cpmet - ermBgi FL )| < KA
< KA,.

E((Crk - erMyetr - crtm(Crl, - CrIFL)
K

The above inequalities together yield [E(¢7(3)|F )| < KA,.

Proof of Equation (E.68)
We first observe that £'(4) can be rewritten as

kn—1w—1 v—1

§W =7 A D I DD I A e

w=2 v=0 u=0

where

n,jk ~n,m n,gh n,jk _n,lm n ,gh n,jk n,lm n,gh n,gh n,jk n,lm n,dmy n,gh
Cz—i—u Ci—&—v Ci—i—w - az—l—u az—i—v i+w + Qz+u A az—i—v (Cz—l-w Cz ) + aH—u A (Cz-‘rv Cz )ai—l—w

2 n,jk n,lm n,lm n,gh n,gh n,jk n,jk\ _n,lm __n,gh
+ AL (CRT = CNCHY — CFT) + AR(C) — O )ag' adsy

n z+u i+v +w i+u 1+v
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+ AL (G = CPR)ap i (G — CFM) + AL(CEAF = ORI (G — CR™agsy

i+u 1 1 +u 7 1

+ A3 (Cnﬂc Cm jk)(cm JIm Cn lm)(Cn ,gh C;z,gh) ]

i+u 1+v +w

Based on the above decomposition, we set

with x(j) defined below. We aim to show that |E(x ‘]-'” )| < KA3/4(A1/4 + i), J =
1,....8
First, set

kn—1w—

1
x(1) = kAgz ;

1v—
n ]k n,lm n ,gh
itu Yito z+w
w=2 v=0 u=0
Upon changing the order of the summation, we have
kn—1w—1 wv-—1
§ : z : § : n,jk n,lm ngh
X( - 3 ( az—i—u) z+v H—w
n w=2 v=0 u=0

Define also

1 ,
X0 = Gy 20 20 (D el )l VBl AL,

=2 v=0 wu=0

Note that E(x(1)[F ) = E(X'(1)[Fy).
By Lemma B3, we have for g > 2,

v—1

n,jk

E(H Z ai+u
u=0

The Cauchy-Schwartz inequality yields

—1w-1 v—1
(|5 (ot artem Eﬁuﬁv‘f"><<Kkﬂ (ot

w=2 v=0 u=0
< B (|| |7)] " < [B([EEiiz.) |

where the last iteration is obtained using equation (E.73) as well as the inequality (a+b)'/? <
a'/? +b'/2, which holds for positive real numbers @ and b, and the third statement in Lemma
B1. It follows that

52,) < KA

)]

‘ Fr 1)} V2 KAK2AY AN (A, + 1)

n,lm 4

ai+v

E(X(1)|~Finfl>| < KA?«LM(\/ A
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Next, we introduce

kn—1w—1 wv-—1
n,jk n,jk nJdm n,gh
X( o 3 2 : E : < § :A Cz—l—u Cz‘ ))O‘i—&-v iy s
n w=2 v=0 u=0
kn—1w—1 ov-—1
2 : z : § : n,jk n,m ndm\ n,gh
( - 3 < az+v > Cz—i—u Cz )ai+w7
knA =2 v=0 u=0
kn—1w—1 wv—1
n Jko n ]k n,lm nJdmy n,gh
X( - 3 E : E : ( E :A i+u ))An(oz-i-u - Cz )ai-i—w‘
n

w=2 v=0 u=0

><

Given that for ¢ > 2, we have

v—1
E(]| Y ancnit-arm|
u=0
Similar steps to x(1) lead to

2)|Fr )| < KAYY A, +n7) and [E(x()|F)| < KAL(VA, +nfy,) for j=3,4.
Define

i+u

) < KA and B(CLE — R FL) < KAt

1 n,jk n,lm n n
X(5> = (k A )3 Z ( azﬁu) H»lv A (Cer% Cz 7gh)
nen w=2 v=0 u=0
1 kn—1w—1 ov—1 '
X0) = Gy 2 2 (Do el el AB((C = )| 7L
ne=n w=2 v=0 u=0
1 kn—1w—1 v—1 ‘
x(6) = VWE Z Z (ZAn(Cﬁr]uk Czwk)) ZFITA (CZF%L crohy
nen w=2 v=0 u=0
1 kn—1w—1 wv—1 .
x(7) = E ( Q?J—Jf)An(Cﬁlvm — O™ AL (CTI — Oty

where we have E(x(5)|F ;)
pose x'(5) as

I
X\
S
Pt

¥

=

@

)

=

=
a2

@
Q

o

Q

=

o

=

=

J
N

=

@

=

=

-+

=

@

]

o

@

o)

Q

g

with

kn—1w—1 v—1

VO =g Ty 2 o (L )etty (s(cy - iz,
w=2 v

— (Ol = CPM A, = T Al w — v = 1))

i+v+1 7
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kn—1w—1
_ § :2 : n,gh ngh § : n,jk n,m
X/(5 - 3 A Cz—l—v C ( az+u> H—v
n
kn—lw 1 v-1

_ n,jk n,gh n,gh\ _n,m

X/(5 - 3 § : E : < § :az—&—u) C’L+’U+1 - CZ+U ) ®ity
n w=2 v=0 u=0
—1lw-1 ov-1

YOLE 322(&?::)& o DE, B

w=2 v=0 u=0

kn—1w—1 v—1

2 n,gh n,jk n,m

x/(5)[5 ZZA w—v—1) bz+v<zai+u>ai+v'
u=0

Using equations (E.74), (E.73), and (E.70) and following the same strategy proof as for x(1),
it can be shown that

E(x/(5) ][ )| < KAy +iy,), for j=1,....5,
which in turn implies
E(xG)|F )| < KAY (VA +07,), for j=1,....5.
The term x(6) can be handled similarly to x(5), hence we conclude that

E(X(@IEZ)I < KAV A+ 1)

Next, we set

kn—1 [fw—1 wv—1
1 c o i . . .
x(1) = (knA,)? < (Z aiﬁf)A"(Ox‘jfu — CMMAL(CE) = C ’gh)> .

w=2 v=0 u=0
Define
1 kn—1 w—1  wv—1
X = s 20 | 30 (2 o) An(C - P A - cm)
nen w=2 v=0 u=0
1 kn—1 w—1 wv—1
B = g 2 2 (el ) Ay - 6r)An (G C?’Q%)
nen w=2 v=0 u=0
1 k'n_l w—1 v—1 )
XMl = (knA,)3 Z Z (Z a?jj)An(CﬁT =GP AT (w — v = 1)<b?+%r1 b?fi)h))
nen w=2 v=0 u=0
1 kn—1 w—1 v—1 .
O = o 3 (S st - o it (Lt - o).
ne=mn w=2 v=0 u=0
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It is easy to see that

Similarly to calculations used for x(1), it can be shown that

IE((T)]

To handle the remaining term x(7)[4], we decompose it x(7)[4] =

N F)l < KAVHAY* +n,,,), for j=1,...

3.

S0 X(T)4][j], where

kn—1w—1 v—1
KO = 5 5730 aldi(Cin, — C e, - O
e R
XU = 7355 SN TN s - e tagi i — O
1:,1 211;; Oluv 01
XU = 3 DO ON (s — OB (C = CRIFT )
,;f_f; o
x(7)[4][3] A 3 Z ZZ (Cr = CP™)ali (O — )
e b
XU = 7355 SN N e — optmyerst — e hyary
o
X(7)[4][5] NE DD D (CE — et — )
Zn 211;; Oluv 01
X' (7)[2][5] = O VROl — O F )
,;f I f
X(MUIS) = 35 SN aiCr, - CEm(CRS - Gy
;i_iz; s
(D7) A 52 2 D (O = G Mali (Ol = CHAL)
o e
XU = g3 2. 2 D it (Gl — CED(C" = Citlhy)
;;“_i;i S
X(7)[4][9] NE SN N Capgnerh — ot (Crat — et ).

w=2 v=0 u=0
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Using arguments similar to those involved for the treatment of x(1), it can be shown that
E(NE)F)] < KASA +n,), for j=1,....8,
which yields
T FL)| < KAL(AY +1i,).

Next, define

kn—1

1
X(8) _ k:_ (Onjk ank)(cm JAm On lm)(ongh C;n,gh).

i+u 1+v +w
=2

g
—
c
L

E
S
Il
=)
I
o

u

This term can be further decomposed into six components. Successive conditioning and
existing bounds give

E((CRk = Cpof) (e = Crimcrst = sl Fe )| < KA,
E((Crgk = CrM(Crr = Cim (O — Ch| Fiey )| < KAV + )
E((Crk - M (Crr = Crim(crst = | FLy )| < KA,
E((Crk = cpofyerir — ermyerst = il Fe )| < KA,
[E((CHt = O (O = O (O = CRah) | ) | S KA,
E((Crgk - My Crr = ermy(Crst = | FL )| < KA,
These bounds can be used to deduce
8)|FiL)] < KA,.
This completes the proof.
E.8.2 Proof of Equations (B.17) and (B.18) in Lemma B5
Observe that
' kn—1
V?Jk(ozz_l,_lkmn . O;z,lm)(clz_%z . Cln gh k A Z Cn ]k Z'r:_l]z: . lem>(07+%h . Cm gh>
kn—1
R CLE] = O = g 3 GO, — O
kn—2kn—1 kn—2kn—1
nknlm n,gh nh nlmnk n,gh n,gh
k2A2 Z ZC . Cl’U CH—% CZ 7 k2A2 Z Zg ] Cz—&-sl’cn C’L I )
" y=0 v=0 " y=0 v=0

Hence, equations (B.17) and (B.18) can be proved using the same strategy as for (B.16).
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E.8.3 Proof of Equations (B.19) and (B.20) in Lemma B5

Note that we have

T L A
P (CL = O™ = v (I — ) + M (O - )
= P G — CP) P — (i - ),
and

NPINEXI = gl VI e I R el
Vi (Cl = ™) — vl v MO = O™ + v Vi (O, — OF)
—VII R (CRAE = CFIR) g (O — ey (e — ot

R R T R L

P (O — O I (O — Oy — ety (O — O
oy (O oy e (Crak  omik (o cmimy
U i (O Oty k(g im ik (o gty
UL (CRh = O + v (Clp = e (€l = o)

v MO = O™ (O = G + v (G = M) (Ol = C™)
—V?’lm( Ak — O (O — O+ (CIEE — ey (e — oty (et — e,

From (A.4), notice that v} is F}\, _-measurable and satisfies ||E(v}|F} )| < KAY?,
The law of iterated expectations and existing bounds imply

B )l < KAYY,
nlm n,gh _ n,jk
|E( zg H—jkn’ 1)’ S KATH
n,lm n,gh n,gh Jk
IE(v; ™ ( z’-i—%n_ci My z—&—Jk: )l < KA,
n,lm n,jk n,jk
[E(vi, ( i+]kn_0 NFL) < KA?/47
[E((Cs, = CPP) (G = CH™(Cle = CRIFL)] < KA. (E.75)

It can also be readily verified that

1 kn, —n,gh,ab
h b , hb ,gb h sgh,a
B P, 1) = (I Il + CL ) = 22T
n

< KV AU+l )

h h h h : : h
Hence, for o € {v""",C[}5" — C"""}, which satisfies E(|¢;"|?

E(@?’ghyff_l) < KA,ll/ . One can show that

Fr,) < KAY* and

1 . , kn Ay, klm

h, gk nl h gl mik : Kl J
Bl ik vt ) — Bt [ (ot ot 4 crmerit ) - PSngii] e )
n
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< KAYHAY + iy,
Next, by combining the successive conditioning together with existing bounds, we have

B O™ < KAVAAY 4, )

[E(e "L, Ol < KA,

which together imply
B i | Fr )| < KAYHAY 4y, ). (E.76)

z+kn z+kn

It is easy to see that equations (B.16), (E.75) and (E.76) and the inequality 0", < niy,
together yield equations (B.19) and (B.20).

E.9 Proof of Lemma B6

Equation (B.21) can be proved easily using the bounds of p(u,v)"" in equation (E.60). To
show equations (B.22), (B.23) and (B.24), we set

ATL(H, gh,w; G, ab,v) = Aw,v)i > (OuHOwG)(Cit)C(w) ¢ (0).
€L/ (n,T)
Then,

A1/4 (All(H gh,w; G, ab,v) — A11(H, gh, u; G,ab,v)) = 0.

The above result is proved following similar steps as for equation (E.54) in case w = 1 by
replacing O (u, v){"" by A(u, v)2 (O HOpG)(Ci—1) — (O HOpG)(Ci_ap,)), which has the
same bounds as the former. Next, decompose All as follows,

E(H, gh,u; G, ab,v) = A(u, v)g[ Z (OgnHOupG)(Ciz1) V4

i€l (n,T)

D OnHOWG)(Cit) (B o)1 FLy) = Vi )

€Ll (n,T)

+ > (OnHOwG)(Cie >(<<u>?’g”<<v>?’“b—E(C(u)?’g"dv)?’“”m&))]-

€L/ (n,T)
We follow the proof of equation (E.55) for w = 1, and we replace O(u, v)(o)’i’n by
)\(u 0)0(0gnHOwG)(Ci—1), which satisfies only the condltlon A, v)§(Ogn HOupG)(Ciz1)| <
)\ ww- Lhis calculation shows that the last two terms in the above decomposition vanish at a
rate faster than A}/ : Therefore,

A1/4 <A11(H gh,u; G, ab,v) — )\(u,v)8< Z (3th3abG)(Ci1)V/i1>> = 0.

€Ll (n,T)
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As a consequence, for (u,v) = (1,2) and (2, 1),

1
1

A1/4ﬁ(H7 gh7 U; G, ab, U) = 0.

The results follow from the following observation,

ﬁ( <Z > (OnHOWG)(Cit) Vi (u.v)

g,h,a,b=14eL/(n,T)

T
—%/ ((%hHé?abG)(Ct)(CfaCfb + Cbe’th“)dt> =0, for (u,v)=(2,2),
0

1/4< > Awoi( X (8th8abG)(Ci1)Vinl(u,v)>—[H(C),G(C)}T>:>0,

g,h,a,b=1 i€l (n,T)

for (u,v) = (1,1).

F Numerical Implementation

We now discuss some details for the numerical implementation of our estimators. Section 3.2
explains how the main quantities of interest can be expressed in terms of [H(C), G(C)], where C
is the spot variance matrix of all d assets. However, in practice many quantities of interest involve
only a much smaller subset of assets, which greatly reduces the computational burden.

For example, suppose we want to calculate the variance of the IdioVol for a single stock, where
R-FM is the CAPM, and IdioVol-FM has one volatility factor — the market volatility. Then, we
only need to consider two assets, the stock and the market, e.g., SPY, so dg = dr =1 and d = 2.
Denote the relevant spot variance-covariance matrix by

Cii Cr2 >
C = ,
< Co1 Ca
where Coy = Cp is the spot variance of the market, and C1; is the spot variance of the individual
stock. The quantity of interest is
[H(C), H(C)ly = [Cz1, Ci]p

where Cz14 = Ci1 — 0126'2_21021. The estimators in equations (16) and (18) involve the first
derivatives 0,,H (C) for a,b =1, ...,d, which are

C12C52Coy  if (a,b) = (2,2)

O H (C) _ o0H (C) _ 8CZj _ 0 (Cn — 01202_21021) _ _02—21021 if (a’ b) (1’2)
’ - 9w OCw 9Cap —C19C5  if (a,b) = (2,1)
1 if (a,b) = (1,1)

If we are interested in the stock’s IdioVol v, by equation (23) we also need the volatility factor
II; = G (Cy) = Caay, and [II, Cz1]7. The derivatives are 9gG (C) = 0G (C) /0Cq, = 1{a =b = 2}.

S-35



G Additional Figures

AA AAPL

0 1 1 1 1 0 1 1 1
2003 2005 2007 2009 2011 2013 2003 2005 2007 2009 2011 2013

AMGN AMZN

0 1 1 1 1 0 1
2003 2005 2007 2009 2011 2013 2003 2005 2007 2009 2011 2013
BAC CAT

0 I I I 0 I
2003 2005 2007 2009 2011 2013 2003 2005 2007 2009 2011 2013
Ccop Csco

CvX DD

0 1
2003 2005 2007

Il
2009 2011 2013
EBAY GE

0 1 1 1
2003 2005 2007 2009 2011 2013

HPQ

0 L 0
2003 2005 2007 2009 2011 2013 2003 2005 2007 2009 2011 2013

Figure G.1: Monthly R? of two Return Factor Models (I?iij) the CAPM (the blue dotted line) and the
Fama-French three factor model (the red solid line). Stocks are represented by tickers (see Table 1 for full
stock names).
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Figure G.2: Monthly R? of two Return Factor Models (}Aﬁ%j) the CAPM (the blue dotted line) and the
Fama-French three factor model (the red solid line). Stocks are represented by tickers (see Table 1 for full
stock names).
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