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a b s t r a c t

We consider a nonparametric time series regression model. Our framework allows
precise estimation of betas without the usual assumption of betas being piecewise
constant. This property makes our framework particularly suitable to study individual
stocks. We provide an inference framework for all components of the model, including
idiosyncratic volatility and idiosyncratic jumps. Our empirical analysis investigates
the largest dataset in the high-frequency literature. First, we use all traded stocks
from NYSE, AMEX, and NASDAQ stock markets for 1996–2017 to construct the five
Fama–French factors and the momentum factor at the 5-minute frequency. Second, we
document the key empirical properties across all the stocks and the new factors, and
apply the nonparametric time series regression model with the new high-frequency
Fama–French factors. We find that this factor model is effective in explaining the sys-
tematic component of the risk of individual stocks. In addition, we provide evidence that
idiosyncratic jumps are related to idiosyncratic events such as earnings disappointments.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Time series regressions of asset returns on Fama–French factors are commonly used in financial economics. This
regression model is often estimated using rolling windows of short intervals of time such as one month, due to concerns
over the time variation in the factor betas, and other potential forms of nonstationarity of the model. However, when
relatively low-frequency data such as daily data is used, the monthly estimates can be noisy. The problem of noisy
estimates due to a small number of time series observations can be somewhat alleviated by some additional averaging,
for instance by forming portfolios of stocks with similarly estimated factor betas.

An alternative is to use high-frequency data. Because the factor betas are effectively covariance-like quantities, they
benefit from the additional data collected at high frequency. Using relatively short time windows, we can decompose
the idiosyncratic risk, which is usually measured as the variation of the stock returns once the impact of the common
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factors has been removed, into its continuous and jump components. Our model can be thought of as a nonparametric
continuous-time regression model. The framework we employ allows for general time variation in factor betas, and so
is particularly suitable to study individual stocks. We provide the asymptotic theory for the estimators of time-varying
betas and each of the idiosyncratic risk components.

Empirically, we perform a much larger scale analysis than what has been done so far in the high-frequency literature.
We use all traded stocks from NYSE, AMEX, and NASDAQ stock markets during the period 1996–2017 to construct high
frequency versions of the Fama–French factors (see Fama and French, 1992, 1993, 2015) and the momentum factor
(see Carhart, 1997) at the 5-min frequency. We document the key empirical properties across all the stocks and the new
factors. We then investigate the potential of the new high-frequency factors in explaining the individual stock returns.
Finally, we study the behavior of the individual stock betas and the components of the idiosyncratic risk measures.

An important preliminary step in our empirical analysis is the study of the appropriate sampling frequency for
individual stocks. Given the large number of stocks in the sample (5005 on average), the liquidity naturally varies widely
across stocks; it also changes over time. For every stock and every month, we select a sampling frequency where the
stock is liquid enough and its return does not have significant market microstructure effects. For this purpose, we use the
Hausman test of Aït-Sahalia and Xiu (2019a) to check for the absence of statistically significant market microstructure
noise at a given frequency, and also take into account the number of zero returns at any potential frequency. We choose
between 5-min, 10-min, 30-min, and daily frequencies. We document the variation across stocks and over time of the
selected frequencies. Our procedure results in a clear increase towards higher frequencies over time, with the steepest
increases following the decimalization in 2001. In the last ten years, some intraday frequency is appropriate for the
majority of stocks.

Our further empirical findings can be summarized as follows. The estimated high-frequency betas are similar to the
standard betas calculated at daily frequency, but the former are more precisely estimated and are more stable across
time, especially towards the end of the sample. The additional high-frequency factors are helpful in explaining additional
time-series variation in stock returns compared to the high-frequency market factor alone. The idiosyncratic risk estimates
at high-frequency and daily frequency are also comparable, though again the former seem to be more accurate towards
the end of our sample. Finally, we decompose the idiosyncratic risk into an idiosyncratic volatility and idiosyncratic jumps
contributions, and we find that earnings surprises increase idiosyncratic jumps. Moreover, earnings disappointments have
a larger effect on the idiosyncratic jumps than do positive earnings surprises. From the perspective of estimating the
continuous component of the model using discrete data, jumps can be thought of as outliers in the same spirit as Box
and Tiao (1968) and Chang et al. (1988).

The literature on nonparametric regressions at high-frequency is closely related. A realized beta estimator, constructed
as the ratio of realized covariance to realized variance, was proposed in Barndorff-Nielsen and Shephard (2004) and
Andersen et al. (2005). These papers do not allow for jumps, and the implicit regression model has constant betas over the
time interval considered, such as a week or a month. When estimating the model on moving windows, the assumption
is effectively that of piecewise constant betas. When jumps are also allowed, realized beta still estimates a meaningful
quantity, provided the continuous and jump components of factors are constrained to have the same effect on the stock
return. Todorov and Bollerslev (2010) maintain the piecewise constant betas assumption, but allow the continuous and
jump betas to differ. Bollerslev et al. (2016) consider a closely related model. A regression relationship between jumps
alone is considered by Li et al. (2017) who also assume piecewise constant betas.

By contrast, we allow for general time variation in betas. Nonparametric time series regression models with time-
varying betas have been previously considered by Mykland and Zhang (2006) and Reiß et al. (2015). These papers assume
there are no jumps and the regressor is scalar. Jacod and Rosenbaum (2013) develop a general inference framework
that is useful to study the continuous components of more general regressions with time-varying betas, see also Li et al.
(2016), Kalnina and Tewou (2017) and Kalnina and Xiu (2017). Neither these nor other results in the literature allow to
conduct inference on the idiosyncratic jump risk, which we develop.

Our framework is more general than nonparametric jump-diffusions (see, e.g., Aït-Sahalia et al., 2009; Ang and
Kristensen, 2012, and Bandi and Phillips, 2003), since we work with Itô semimartingales. We make no restrictions on
the continuous or jump leverage effects, we allow for jumps in levels and volatilities of our processes, and we allow for
general time-variations in factor betas. As a result, our betas may well depend on firm characteristics or macroeconomic
variables, a specification that is popular in empirical finance, except we do not need to know what those variables are,
as long as they satisfy some weak regularity assumptions.

The paper is organized as follows. Section 2 presents the continuous-time regression model and lists our assumptions.
Section 3 outlines our identification strategy and presents the estimators. Section 4 presents their asymptotic properties.
Section 5 provides Monte Carlo simulation evidence. Section 6 gives the details on the construction of the high-frequency
factors, and presents the empirical results. Section 7 concludes. The appendix contains the proofs.

2. The model

We consider the following nonparametric time series regression model,

Yt = Y0 +

∫ t

0
β

⊺
s−dX

c
s +

∑
0≤s≤t

β̃
⊺
s−∆Xs + Zt , (1)
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where Y is the dependent process, X is a d-dimensional multivariate covariate process, and Z is the residual process. In
the above, X c denotes the continuous component of X , and ∆Xs denotes its jump (if any) at time s. βt and β̃t are the factor
loadings with respect to the continuous and the jump parts of X .

This model, cast in continuous time, is analogous by the discrete-time factor model with observable factors that is
widely used in macroeconomics and empirical finance. The continuous-time model is a natural choice for modeling high-
frequency data, particularly for intraday transaction prices. In contrast to the standard factor model in empirical asset
pricing, the drift or the “expected return” is absorbed into the residual process Zt for convenience. Within a short period
of time, such as a day or a week, the drift is economically negligible, econometrically not identifiable over a fixed time
horizon, and does not affect the measurement of volatilities and risk which are the main objectives of the paper.

Time-variation in betas is an important component of our model. While an assumption of constant betas may be used
relatively safely for portfolios, it is not supported by data for many individual stocks over periods such as one month (the
period we use in our empirical application), see, e.g., Kalnina (2015) and Reiß et al. (2015).

We assume that X and Z are Itô semimartingales satisfying standard regularity assumptions. We make no restrictions
on possible continuous and/or jump leverage effects, allow for jumps in returns and volatilities of X and Z , and allow for
general time-variations in the factor betas:

Assumption 1. Suppose that the d-dimensional vector-valued process X follows a general Itô semimartingale with the
representation1

Xt = X0 +

∫ t

0
bs ds +

∫ t

0
σsdWs + δ ⋆ µt , (2)

where W is a d′-dimensional Brownian Motion, and µ is a Poisson random measure with compensator ν of the form
ν(dt, du) = dt ⊗ λ(du) for some σ -finite measure λ on Rd. The stochastic volatility process σ takes values in Rd⊗d′

. The
spot covariance, denoted as ct = σtσ

⊺
t , follows

ct = c0 +

∫ t

0
b̃sds +

∫ t

0
σ̃sdWs + (δ̃1{∥δ̃∥≤1}) ⋆ (µ − ν)t + (δ̃1{∥δ̃∥>1}) ⋆ µt . (3)

The drift terms bt and b̃t are progressively measurable and locally bounded, the processes σt and σ̃t are càdlàg, and ct is
bounded away from 0. In addition, for some r ∈ [0, 1), there is a sequence of stopping times (τm) increasing to ∞, and
λ-integrable deterministic functions ~m and ~̃m such that ∥δ(ω, t, x)∥r

∧ 1 ≤ ~m(x) and ∥δ̃(ω, t, x)∥2
∧ 1 ≤ ~̃m(x), for all

(ω, t, x) with t ≤ τm(ω).

Assumption 2. Suppose the stochastic process Y follows the continuous-time multiple regression model given by (1), in
which βt and β̃t are predictable and locally bounded, and Zt is another Itô semimartingale:

Zt = Z0 +

∫ t

0
hsds +

∫ t

0
γsdBs + ε ⋆ ϕt . (4)

In addition, hs is progressively measurable and locally bounded, and the process γt is càdlàg. ϕ is a Poisson random
measure with compensator ξ of the form ξ (dt, du) = dt ⊗ π (du). Finally, there is a sequence of stopping times (τm)
increasing to ∞, and a π-integrable deterministic function ζm such that ∥ε(ω, t, x)∥r

∧ 1 ≤ ζm(x), for all (ω, t, x) with
t ≤ τn(ω), where r is, without loss of generality, the same as in Assumption 1.

Similarly to the classical regression framework, we also need an exogeneity assumption for identification. We impose
such an assumption on the continuous and jump components. Denote by Ac and Aj the continuous and jump components,
respectively, of any process A. For example, Z j

= ε ⋆ ϕ, and Z c
= Z − Z j.

Assumption 3. For any 0 ≤ s ≤ t , the following orthogonality equalities hold:

[Z c
s ,

∫ s

0
β

⊺
hdX

c
h ] = 0, and (5)

[Z j
s,
∑
0≤h≤s

β̃
⊺
h∆Xh] = 0, (6)

where [·, ·] denotes the quadratic covariation.

For example, if Yt is a log-price of a stock, then changes in Zt are usually interpreted as the stock idiosyncratic returns
relative to the factors Xt . The identification Assumption 3 allows us to identify the decomposition of the total risk of
the stock (measured by [Yt , Yt ], the quadratic variation of Y ) into two components: the systematic risk component (as

1 See Aït-Sahalia and Jacod (2014) for more details. The use of W and µ in both Eqs. (2) and (3) is without loss of generality, see, e.g., Section
8.1.3 of Jacod and Protter (2012).
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measured by the quadratic variation of stock price that is due to the common factors Xt ), and the stock idiosyncratic risk
(measured by [Zt , Zt ]). To measure the relative importance of the systematic risk over a fixed time interval [0, t], we use

R2
t = 1 −

[Zt , Zt ]
[Yt , Yt ]

, (7)

the continuous-time counterpart of the coefficient of determination.
We are also interested in decomposing the total idiosyncratic risk into the idiosyncratic volatility and the idiosyncratic

jump risk. In our model, this corresponds to the decomposition of the quadratic variation of Zt into its continuous and
jump components. In particular, we define the Idiosyncratic Volatility (IdV ) and Idiosyncratic Jumps (IdJ) as follows:

IdVt =
1
t

∫ t

0
γ 2
s ds, and IdJt =

1
t

∑
s≤t

(∆Zs)2, (8)

where γ 2
s is the spot variance of Zs, and ∆Zs = Zs − Zs− is the jump size of Z when there is one at time s. Clearly,

1
t
[Zt , Zt ] = IdVt + IdJt .

In addition, we define the Integrated Beta (Iβ) as the average of the time-varying “spot beta” βs:

Iβt =
1
t

∫ t

0
βsds. (9)

Note that Iβt is a d-dimensional vector. We do not estimate the “jump beta” β̃ and note that additional assumptions
would be required for its identification (e.g. a constant “jump beta” assumption). Otherwise, when d = 1, β̃s is identified
only if X jumps at s. When d > 1, there is no time point s when all d components of β̃s are identified. While additional
assumptions would be needed to identify β̃s, we show below that the current set of assumptions is sufficient for the
identification and estimation of the remaining quantities of interest.

3. Econometric strategy

The strategy for estimation is conceptually simple. Similarly to the standard factor model with observable factors, we
use OLS-type regressions for the continuous components of the factor model. However, due to the time variation in βs
and γs, we have to run regressions using data from a moving window, and then aggregate the spot estimates to obtain
estimates for Iβ and IdV . On the other hand, the estimation of the jump idiosyncratic risk IdJ requires estimation of various
jump times and sizes, which does not involve any regressions or moving windows.

3.1. Identification

The key intuition for the identification of the spot β and γ is from the classical regression framework. First, we can
identify the spot (or instantaneous) β by comparing the spot “variance” of X and its spot “covariance” with Y , where we
use the orthogonality of X and Z in (5). For any s in [0, t],

d
ds

[Y c
s , X c

s ] = β⊺
s
d
ds

[X c
s , X

c
s ]. (10)

As usual in modeling of high-frequency data, our “variance” and “covariance” are measured by the quadratic covariations.
In addition, we can decompose the spot total variation of Y c into the variation explained by the factors and the residual

variation:
d
ds

[Y c
s , Y c

s ] = β⊺
s
d
ds

[X c
s , X

c
s ]βs +

d
ds

[Z c
s , Z

c
s ] = β⊺

s csβs + γ 2
s . (11)

Therefore, we can estimate γs and βs using data from a short window that contains s. Once these are estimated for each
moving window, we can aggregate them to obtain an estimator of Iβ and IdV .

The following identity allows for the identification of IdJ ,∑
s≤t

(∆Zs)2 =

∑
s≤t

(∆Ys)2 · 1{∆Xs=0}. (12)

Eq. (12) follows from the identification assumption in (6), which implies that X and Z do not jump together. Hence, IdJ
can be estimated by combining the estimates of Y jump times and sizes with the estimates of X jump times.

Notice that our spot β and γ are identified from the continuous part of the quadratic variations, so that the specification
of the jump part does not affect the identification or estimation of β and γ . Conversely, the specification of the continuous
components does not affect the identification or estimation of IdJ . Note also that in this high-frequency setting, the drift
components of Y and X do not enter any of the above identification arguments, as they are of smaller order compared to
the Brownian components and jumps.
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3.2. Estimation

We denote the distance between adjacent observations by ∆n. Let ∆n
i A = Ai∆n − A(i−1)∆n , for 1 ≤ i ≤ [t/∆n] and any

process A. To implement the time-localized regressions, we form a sequence of moving windows of kn observations, so
that the length of the interval covered by each window is kn∆n.

We collect truncated returns of Y and X sampled within the ith window into a vector Yi and a matrix Xi,

Yi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(∆n
i+1Y )1

{
|∆n

i+1Y |≤un
}

(∆n
i+2Y )1

{
|∆n

i+2Y |≤un
}

...

(∆n
i+knY )1

{
|∆n

i+kn
Y |≤un

}

⎞⎟⎟⎟⎟⎟⎟⎟⎠
kn×1

and Xi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
∆n

i+1X
)⊺ 1{

∥∆n
i+1X∥≤un

}(
∆n

i+2X
)⊺ 1{

∥∆n
i+2X∥≤un

}
...(

∆n
i+knX

)⊺ 1{
∥∆n

i+kn
X∥≤un

}

⎞⎟⎟⎟⎟⎟⎟⎟⎠
kn×d

,

where un is the threshold selected to remove jumps. For simplicity, we use the same notation un for the truncation
threshold of both X and Y , but they can differ as long as they are chosen to satisfy the restrictions below.

Within the ith window, we first estimate the spot covariance matrix of X with the truncated realized variance over a
short window, that is,

ĉi∆n =
1

kn∆n
(X ⊺

i Xi) =
1

kn∆n

kn∑
j=1

(
∆n

i+jX
) (

∆n
i+jX

)⊺ 1{
∥∆n

i+jX∥≤un
}. (13)

This estimator is standard and taken directly from, e.g., Jacod and Protter (2012). Next, we construct an OLS estimator of
β̂i∆n based on Eq. (10),

β̂i∆n = (X ⊺
i Xi)−1X ⊺

i Yi. (14)

Next, building on Eqs. (10) and (11), we obtain

γ̂ 2
i∆n

=
1

kn∆n
Y⊺
i Yi − β̂

⊺
i∆n

ĉi∆n β̂i∆n =
1

kn∆n
Y⊺
i

(
Idkn − Xi(X

⊺
i Xi)−1X ⊺

i

)
Yi,

where Idkn is a kn × kn identity matrix. These local estimates resemble closely the OLS regression estimates of the slope
and the residual variance, except we use truncation to remove the discontinuous component.

We can now construct the following estimators for the Integrated Beta and the Idiosyncratic Volatility:

Îβ t =
1
t

[t/kn∆n]−1∑
i=0

β̂ikn∆nkn∆n and ÎdV
naive
t =

1
t

[t/kn∆n]−1∑
i=0

γ̂ 2
ikn∆n

kn∆n. (15)

Although these estimators are constructed similarly, they have distinct asymptotic behavior. While the ÎdV
naive
t estimator

is consistent, it has a bias of larger order than ∆
−1/2
n , which prevents the construction of confidence intervals:

Theorem 1. Suppose Assumptions 1–3 hold. Let kn ≍ ∆
−ς
n and un ≍ ∆ϖ

n for some ς ∈ ( r2 ,
1
2 ) and ϖ ∈ [

1−ς

2−r , 1
2 ). Then, as

∆n → 0, we have

kn
(
ÎdV

naive
t − IdVt

)
p

−→ −
d
t

∫ t

0
γ 2
s ds.

Hence, we propose the following bias-corrected estimator for IdV ,

ÎdV t =
1
t

(
1 +

d
kn

) [t/kn∆n]−1∑
i=0

γ̂ 2
ikn∆n

kn∆n. (16)

Based on the identification identity in Eq. (12), we estimate IdJ as follows,

ÎdJ t =
1
t

[t/∆n]∑
i=1

(∆n
i Y )

2
· 1{∥∆n

i X∥≤un, |∆n
i Y |>un}. (17)

The above estimator uses the Y returns in those time intervals where Z is estimated to jump; an interval is likely to
contain a Z jump if Y return is relatively large (i.e., larger than un to be specified later), while at the same time each of
the X returns is relatively small.

Hence, we can estimate the coefficient of determination in (7),

R̂2
t = 1 −

ÎdV t + ÎdJ t
RV (Y )t

, (18)

where RV (Y )t is the Realized Volatility of Y , RV (Y )t =
1
t

∑[t/∆n]

i=1 (∆n
i Y )

2.
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We remark that the estimators in (15) and (16) use non-overlapping subsamples.2 The same is true for the asymptotic
variance estimators introduced in Section 4. Corresponding estimators based on overlapping subsamples can be con-
structed; one can show that they share the same asymptotic distribution as the non-overlapping estimators. However, the
overlapping estimators exhibit finite-sample biases due to the end-of-sample effects. The latter biases are automatically
avoided by the non-overlapping estimators.

We can make an analogy here between our framework and the classical multiple regression setting. Indeed, within each
local window, our estimator resembles the standard estimator of the error variance, a result of the local linear structure
of the stochastic processes. Due to the data being sampled from a fixed window of size T , our in-fill asymptotic setting
allows for identification of realizations instead of expectations, which requires a substantial span of time. As a result, our
setting allows for considerable dependence and heterogeneity in the underlying processes. This is in sharp contrast to the
long-span or “large T ” asymptotics in the standard time series regression, which typically imposes high-level conditions
to limit dependence and heterogeneity.

4. The asymptotic distributions

This section provides the asymptotic distributions of our estimators, which are useful for constructing the confidence
intervals.

Theorem 2. Suppose Assumptions 1–3 hold. In addition, kn ≍ ∆
−ς
n and un ≍ ∆ϖ

n for some ς ∈ ( r2 ∨
1
3 ,

1
2 ) and ϖ ∈ [

1−ς

2−r , 1
2 ).

As ∆n → 0, we have3

∆−1/2
n

(
Îβ t − Iβt

) L−s
−→ Wβ

t and ∆−1/2
n

(
ÎdV t − IdVt

) L−s
−→ Wγ

t ,

where Wβ and Wγ are processes defined on the extension of the original space (Ω,F, {Ft}t≥0,P), which, conditionally on F ,
are centered Gaussian with the covariance matrix and variance given by

E(Wβ
t W

β
t
⊺
|F) =

1
t2

∫ t

0
γ 2
s c

−1
s ds and E((Wγ

t )
2
|F) =

2
t2

∫ t

0
γ 4
s ds.

The asymptotic variances can be estimated as follows,
[t/kn∆n]−1∑

i=0

γ̂ 2
ikn∆n

(̂cikn∆n )
−1kn∆n

p
−→

∫ t

0
γ 2
s c

−1
s ds, and 2

[t/kn∆n]−1∑
i=0

(
γ̂ 2
ikn∆n

)2
kn∆n

p
−→ 2

∫ t

0
γ 4
s ds.

To state the next theorem, we introduce some additional notation. Let
{
Tq
}
q=1,2,... be the sequence of the jump times

of Z . Let ηt denote the spot volatility process of Y . Denote by κq a sequence of independent uniform random variables
on [0, 1], for q = 1, 2, . . ., defined on the extension of the original space. Finally, denote by Ψq− and Ψq+(q = 1, 2, . . .) a
sequence of independent standard normal random variables, also defined on the extension of the original space.

Theorem 3. Suppose Assumptions 1–3 hold. Let un ≍ ∆ϖ
n and 1/(4 − 2r) ≤ ϖ < 1/2. Then as ∆n → 0, we have

∆−1/2
n

(
ÎdJ t − IdJ

) L−s
−→ W J

t

where

W J
t =

2
t

∑
q≥1:Tq≤t

∆YTq

(
√

κqηTq−Ψq− +
√
1 − κqηTqΨq+

)
.

Furthermore, if (Y , X⊺)⊺ does not co-jump with its spot volatility process, then W J
t , conditionally on F , is centered Gaussian

with variance given by

E((W J
t )

2
|F) =

4
t2

∑
q≥1:Tq≤t

(
∆YTq

)2
η2
Tq .

The above asymptotic variance can be estimated consistently by

4
t2

[t/kn∆n]−1∑
i=0

η̂2
ikn∆n

kn∑
j=1

(∆n
ikn+jY )

2
· 1{

∥∆n
ikn+jX∥≤un, |∆n

ikn+jY |>un
},

where η̂2
i∆n

=
1

kn∆n
(Y⊺

i Yi), provided that kn → ∞ and kn∆n → 0 as ∆n → 0.

2 Of course, ÎdJ t in (17) does not use subsamples at all.
3 Here we use

L−s
−→ to denote stable convergence in law.
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If (Y , X⊺)⊺ does co-jump with its spot volatility process, the limiting process W J
t is not Gaussian conditionally on F ,

and an asymptotic variance estimator is not helpful. In this case, the limiting distribution can be obtained by Monte Carlo
simulation, see, e.g., Section 10.2.4 of Aït-Sahalia and Jacod (2014), who study inference for quadratic variation of a scalar
process.

Remark 1. Inference on the total idiosyncratic risk, IdVt +IdJt , follows from the above two theorems, plus the fact that the
two standardized estimators are asymptotically independent. The independence of Wγ

t in Theorem 2 and W J
t in Theorem 3

can be shown by a mix of the two proofs, for example, following the arguments of the proof of Theorem 5.4.2 of Jacod
and Protter (2012).

5. Monte Carlo simulations

We now examine the finite sample performance of our estimators. For this purpose, we simulate many trajectories
over one month for one stock with log-price Yt following a three-factor model, which is a special case of (1).

The factors Xt = (X1t , X2t , X3t)
′ follow the dynamics⎛⎝ dX1t

dX2t

dX3t

⎞⎠ =

⎛⎝ b1
b2
b3

⎞⎠ dt +

⎛⎝ σ1t 0 0
0 σ2t 0
0 0 σ3t

⎞⎠⎛⎝ 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

⎞⎠⎛⎝ dW1t

dW2t

dW3t

⎞⎠+

⎛⎝ J1t
J2t
J3t

⎞⎠ dNt .

The factor volatilities are driven by Feller’s square root process (a.k.a the Cox–Ingersoll–Ross model) with the same process
Nt ,

dσ 2
it = κ̃i

(̃
αi − σ 2

it

)
dt + υ̃iσitdW̃it + J̃itdNt , i = 1, 2, 3.

For each i = 1, 2, 3, the size of jumps in Xi, Jit , has a double exponential distribution:

Jit ∼

{
exp(g+

i ) with probability qi
− exp(g−

i ) with probability 1 − qi
,

where qi is the mixture probability. The size of each volatility jump, J̃it , is exponentially distributed with mean g̃i for each
i = 1, 2, 3. Nt is a Poisson process with λ jumps per year on average. The λ parameter is chosen so that on average, the
discontinuous quadratic variation of Y equals the continuous quadratic variation.

The stock idiosyncratic returns are generated by the following jump-diffusion,

dZt = htdt + γtdW t + J tdN t ,

where the idiosyncratic jump size J t is another double exponential:

J t ∼

{
exp(g+) with probability q

− exp(g−) with probability 1 − q
.

In the above, N t is another Poisson process with the expected number of jumps per year also equal to λ, and is independent
of Nt .

We simulate the betas as follows,

dβit = κi (αi − βit) dt + υidBit , i = 1, 2, 3.

In the above, Wt , W̃t , W t , and Bt are mutually independent standard Brownian motions. The values of all the above
parameters are listed in Table 1. We simulate 1000 paths of this process over one month.

Table 2 presents the sample bias and the sample standard deviation of the estimation error, as well as the sample RMSE.
Three different choices of the subsample size and three different sampling frequencies are considered (5, 10, and 30 min).
The left panel corresponds to the subsample sizes used in the empirical application. When interpreting these results, it
is useful to notice that in our model, the true betas and idiosyncratic jumps are random and vary across simulations.
We set the truncation parameter as un = 3∆0.47

n
√
BVt , which is a standard choice in the literature, see, for example, Aït-

Sahalia and Xiu (2019b) .4 ∆n is the distance between the observations, and BVt is the annualized bipower variation of
the corresponding day. As a robustness check, Table 3 presents the same results with un = 4∆0.47

n
√
BVt . The simulation

results support our theoretical consistency results: all estimators become more precise as more observations are available.
Fig. 1 shows the finite sample distributions of our standardized estimators, as well as the standardized naive IdV

estimator. For comparison, Fig. 1 also superimposes the asymptotic distribution. We can see that the finite sample
distributions of our estimators are close to their asymptotic distributions, and the bias correction for IdV estimation is
effective.

4 An alternative would be to use a theoretically optimal threshold recently proposed by Figueroa-López and Mancini (2019) for the estimation
of univariate integrated variance.
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Table 1
Monte Carlo simulations: parameter values.
Factor dynamics Beta dynamics Idiosyncratic dynamics

b (0.05, 0.03, 0.02) κ (2, 2, 2) γ 0.35
σ 2
0 (0.12, 0.09, 0.04) α (0.15, 0.10, −0.10) h 0

κ̃ (3, 4, 5) υ (0.03, 0.03, 0.03) g+
γ × 14

√
∆n

g̃ (0.004, 0.005, 0.004) g−
γ × 14

√
∆n

g+

i σi0×7
√

∆n q 0.5
g−

i σi0×7
√

∆n
λ 67
α̃ (0.09, 0.04, 0.06)
υ̃ (0.3, 0.4, 0.3)
q (0.5, 0.5, 0.5)
(ρ12, ρ13, ρ23) (0.05, 0.10, 0.15)

Note: This table reports the parameter values used in the data generating process of our Monte Carlo
simulations.

Table 2
Simulation results.
5 min sampling frequency

kn= 78 kn= 91 kn= 117

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

Îβ
(1)
t −0.15 2.64 2.65 −0.16 2.64 2.65 −0.15 2.65 2.65

Îβ
(2)
t −0.05 3.13 3.13 −0.05 3.13 3.13 −0.05 3.11 3.11

Îβ
(3)
t 0.26 4.18 4.19 0.31 4.16 4.17 0.24 4.14 4.14

ÎdV t 0.06 0.46 0.47 0.07 0.46 0.47 0.08 0.46 0.47

ÎdJ t −0.06 0.78 0.78 −0.06 0.78 0.78 −0.06 0.78 0.78

10 min sampling frequency

kn= 39 kn= 63 kn= 91

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

Îβ
(1)
t −0.10 3.83 3.83 −0.14 3.75 3.75 −0.14 3.67 3.67

Îβ
(2)
t 0.06 4.67 4.67 0.02 4.47 4.47 0.03 4.49 4.49

Îβ
(3)
t −0.17 6.46 6.46 −0.20 6.23 6.23 −0.18 6.25 6.26

ÎdV t 0.03 0.67 0.67 0.07 0.66 0.66 0.09 0.65 0.66

ÎdJ t 0.00 0.98 0.98 0.00 0.98 0.98 0.00 0.98 0.98

30 min sampling frequency

kn= 13 kn= 21 kn= 39

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

Îβ
(1)
t −0.17 7.56 7.56 0.01 6.97 6.97 0.04 6.47 6.47

Îβ
(2)
t 0.07 9.67 9.68 0.34 8.91 8.92 0.25 8.37 8.38

Îβ
(3)
t 0.18 13.02 13.02 −0.04 12.21 12.21 0.07 11.39 11.39

ÎdV t −0.60 1.22 1.36 −0.17 1.20 1.21 0.02 1.20 1.20

ÎdJ t −0.03 1.88 1.88 −0.03 1.88 1.88 −0.03 1.88 1.88

Note: Columns ‘‘Bias’’, ‘‘Stdev’’, and ‘‘RMSE’’ contain the sample Bias, the sample standard deviation, and the sample root
mean squared error across simulations of the centered estimator, e.g., of the quantity ÎdV t − IdVt . All these quantities
are multiplied by 100. kn is the number of observations in a subsample. un = 3∆0.47

n
√
BVt .

6. Empirical results

6.1. Construction of intraday equity factors

We reconstruct the five Fama–French factors (see Fama and French, 1993 and Fama and French, 2015) and the
momentum factor (see Carhart, 1997) at the 5-min frequency from January 1, 1996 to December 31, 2017. The construction
takes a few steps and requires a combination of three databases. We describe the details below.

Since the daily portfolio constituents for the five Fama–French factors are not publicly available, we start by replicating
these factors at the daily frequency to obtain the constituents (the website of Kenneth French contains the factors but
not their constituents). We download daily adjusted returns and firm fundamentals from the merged Center for Research
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Table 3
Simulation Results.
5 min sampling frequency

kn= 78 kn= 91 kn= 117

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

Îβ
(1)
t −0.14 2.63 2.64 −0.16 2.63 2.64 −0.15 2.64 2.64

Îβ
(2)
t −0.03 3.15 3.15 −0.04 3.16 3.16 −0.02 3.13 3.13

Îβ
(3)
t 0.26 4.13 4.14 0.31 4.13 4.14 0.25 4.10 4.10

ÎdV t 0.20 0.50 0.54 0.20 0.50 0.54 0.21 0.50 0.54

ÎdJ t −0.13 0.77 0.78 −0.13 0.77 0.78 −0.13 0.77 0.78

10 min sampling frequency

kn= 39 kn= 63 kn= 91

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

Îβ
(1)
t −0.06 3.89 3.89 −0.08 3.82 3.82 −0.08 3.72 3.72

Îβ
(2)
t 0.06 4.62 4.62 0.01 4.44 4.44 0.02 4.47 4.47

Îβ
(3)
t −0.21 6.51 6.51 −0.23 6.31 6.31 −0.23 6.31 6.31

ÎdV t 0.17 0.74 0.76 0.22 0.73 0.76 0.24 0.73 0.77

ÎdJ t −0.18 1.02 1.03 −0.18 1.02 1.03 −0.18 1.02 1.03

30 min sampling frequency

kn= 13 kn= 21 kn= 39

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

Îβ
(1)
t −0.13 7.59 7.59 0.06 6.97 6.97 0.07 6.46 6.46

Îβ
(2)
t 0.03 9.89 9.89 0.30 8.90 8.90 0.16 8.32 8.33

Îβ
(3)
t 0.15 12.84 12.84 −0.08 12.05 12.05 0.01 11.25 11.25

ÎdV t −0.24 1.74 1.75 0.20 1.75 1.76 0.40 1.76 1.80

ÎdJ t −0.41 2.27 2.30 −0.41 2.27 2.30 −0.41 2.27 2.30

Note: Columns ‘‘bias’’, ‘‘stdev’’, and ‘‘RMSE’’ contain the sample bias, the sample standard deviation, and the sample root
mean squared error across simulations of the centered estimator, e.g., of the quantity ÎdV t − IdVt . All these quantities
are multiplied by 100. kn is the number of observations in a subsample. un = 4∆0.47

n
√
BVt .

in Security Prices (CRSP) database and Compustat database. We restrict the universe of stocks to those listed on NYSE,
NASDAQ, and AMEX, and apply the same stock filters as those imposed by Fama and French (1993) based on data
availability and concerns of sampling bias or survival bias. We then build six value-weighted portfolios by sorting on
market equity (ME) and the ratio of book equity to market equity (BE/ME), where BE/ME for June of year t is the book
equity for the last fiscal year end in t −1 divided by ME for December of t −1. Small (S) or big (B) portfolios are classified
by ME according to their comparison with the median size of NYSE, whereas the book-to-market groups are divided
based on the breakpoints for the bottom 30 percent (L), middle 40 percent (M), and top 30 percent (H) of ranked values
of BE/ME. The value and size factors (spread) are given by:

HML =
1
2
(SH + BH) −

1
2
(SL + BL), and SMB =

1
3
(SH + SM + SL) −

1
3
(BH + BM + BL).

Similarly, for the profitability and investment factors introduced in Fama and French (2015), we form six portfolios each,
based on the intersections of two size portfolios (S and B) and three profitability (OP) portfolios, denoted by robust (R),
neutral (N), and weak (W), respectively, as well as three investment (Inv) portfolios, denoted by conservative (C), neutral
(N), and aggressive (A), respectively. OP for June of year t is annual revenues minus cost of goods sold, interest expense,
and selling, general, and administrative expenses divided by the book equity for the last fiscal year end in t − 1. Inv is
the change in total assets from the fiscal year ending in year t − 2 to the fiscal year ending in t − 1, divided by t − 2 total
assets. The OP and Inv breakpoints are the 30th and 70th NYSE percentiles. The profitability and investment factors are
given by:

RMW =
1
2
(SR + BR) −

1
2
(SW + BW ), and CMA =

1
2
(SC + BC) −

1
2
(SA + BA).

To construct the momentum factor, we form six value-weighted portfolios based on ME and prior (2–12) months’ returns,
following the procedure outlined on Ken French’s website. We use up (U), flat (F), and down (D) to denote momentum
categories based on the 30th and 70th NYSE percentiles of prior (2–12) months’ returns. The final MOM factor is the



Y. Aït-Sahalia, I. Kalnina and D. Xiu / Journal of Econometrics 216 (2020) 86–105 95

Fig. 1. Simulation results: Standardized estimates. Note: We plot the finite sample distributions of the standardized statistics (gray histograms), and
we superimpose the standard normal law (black solid line). The finite sample distribution of the ÎdV

naive
t estimator appears in red dashed lines. The

sampling frequency is every 5 min and the subsamples are one day long, i.e., kn = 78. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

average return on the two high prior return portfolios minus the average return on the two low prior return portfolios,
given by:

MOM =
1
2
(SU + BU) −

1
2
(SD + BD).

Finally, the market factor (MKT) is simply the return of a value-weighted portfolio of all stocks in this pool.
The replication at daily frequency provides daily portfolio constituents and their weights in these 6×4 = 24 component

portfolios. Using these weights, we can obtain buy-and-hold portfolio returns at intraday intervals using transaction-level
data on individual stocks. Note that all returns are simple returns, and that the portfolio weights are also adjusted at
an intraday frequency (because high-frequency price changes lead to high-frequency market capitalization changes). In
particular, on day s and at time interval i, the return of any of these portfolios is given by PRets,i:

PRets,i =

∑Ns
j=1 w

j
s,i · Ret

j
s,i∑Ns

j=1 w
j
s,i

,

where Ns denotes the total number of stocks for this portfolio on day s, j denotes the jth stock of the portfolio, and w
j
s,i

is given by

w
j
s,i = wj

s ·

i−1∏
l=0

(1 + Ret js,l),

with w
j
s being the market capitalization based on the close price of stock j on day s − 1. The return at time 0 on day s

denotes the overnight return from day s − 1 to s.
We collect trades and quotes data of all stocks from the New York Stock Exchange Trade and Quotes (NYSE TAQ)

Database via Wharton Research Data Services (WRDS). The TAQ data require substantial cleaning due to idiosyncrasies
of the market microstructure. We follow the cleaning procedure detailed in Da and Xiu (2017). First, we remove trades
and quotes with condition codes Z, B, U, T, L, G, W, K, J, and the corresponding odd lot trades, which have an additional
letter I, as well as those with non-empty suffix codes (preferred shares). Next, we identify the opening trades as those
with condition codes O, Q, OI, or QI, closing trades with 6, M, 6I, or MI, and remove all trades beyond the window of
opening and closing time points. We only keep trades with correction indicator 00 or 01. Then, we construct the national
best bid and offer (NBBO) data using quotes from all exchanges at a 1-s frequency. We match trades with NBBOs by their
recorded time points, and eliminate those trades that are outside the range of the corresponding NBBOs.

There are several obstacles when merging the cleaned TAQ data with the CRSP data. We use individual stock’s CUSIP
instead of ticker information, because CRSP tickers differ from those recorded in the TAQ data. There exists a small portion
of firm-day pairs, for which CUSIPs are missing from the TAQ database. We handpick their CRSP tickers based on available
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Fig. 2. Factors. Note: This figure compares the daily aggregated cumulative returns of the high-frequency factors, in blue solid lines (AKX), with those
of the low-frequency factors, in red dashed lines (FF), downloaded from Kenneth French’s website. The sampling period is January 1996–December
2017.

information from adjacent days. In addition, firms change their TAQ tickers from time to time due to mergers, acquisitions,
or other reasons, so we instead use CRSP PERMINO’s to index all stocks, which do not change over time. Finally, the
intraday prices from TAQ are unadjusted for dividends or splits that occur overnight. To obtain the adjusted overnight
returns, we use CRSP (unadjusted) open and close prices to obtain intraday open-to-close returns. Along with adjusted
(close-to-close) returns from CRSP we can infer the (close-to-open) adjusted overnight returns. Because CRSP open and
close prices are more carefully selected based on additional information other than the sequence of trades, we use them
as the open and close prices for the TAQ data. This also ensures a perfect match between daily returns from CRSP and
daily returns that aggregate intraday returns from the TAQ data.

In Fig. 2, we compare the daily cumulative returns of HML, SMB, RMW, CMA, MktRf, and MOM factors based on our
high-frequency replication, with the daily returns downloaded from Kenneth French’s website (MktRf denotes MKT in
excess of the one-month T-bill rate). The levels of high- and low-frequency cumulative returns match almost perfectly
for MktRf, HML, and CMA, though there are moderate differences for SMB, and sizeable differences for RMW and MOM.
For RMW, the largest discrepancy appears to occur right after 2008, while for MOM it occurs around 2000. These two
differences aside, the patterns of their cumulative returns remain alike shortly afterwards. In fact, the corresponding
correlations of daily returns are very high: 0.9998 (MktRf), 0.9921 (SMB), 0.9932 (HML), 0.9566 (RMW), 0.9983 (CMA),
and 0.9852 (MOM).

6.2. The choice of sampling frequency for the stock returns

Before running any high-frequency regressions for individual stocks, it is important to determine for each stock in
each month a frequency at which the impact of the microstructure noise is negligible. We adopt the following procedure.
We preselect a grid of four frequencies: 5-min, 10-min, 30-min, and daily, and assign each stock-month pair one of these
frequencies. For a given stock-month pair, we assign the highest frequency, at which the prices satisfy the following two
criteria. First, there should be at least 90% non-zero returns. Second, the hypothesis of no noise cannot be rejected. We
select the daily frequency if at least one criterion fails at each of the three higher frequencies. To test the null hypothesis
of no noise, we employ one of the equivalent Hausman tests proposed by Aït-Sahalia and Xiu (2019a) (the one based on
first-order autocorrelations, Tn, in Section 3.1), which is more rigorous and convenient than reading off a frequency visually
from a volatility signature plot. Despite running many statistical tests, we do not adjust for multiple testing because in
our setting, a false positive leads to a more conservative choice of the sampling frequency. The 90% rule is arbitrary and
rather conservative. It ensures a minimum number of non-zero returns for the Hausman test, which in turn ensures the
test has reasonable power (zero returns are deleted before the application of the test).



Y. Aït-Sahalia, I. Kalnina and D. Xiu / Journal of Econometrics 216 (2020) 86–105 97

Fig. 3. Percentage of the selected sampling frequencies. Note: This figure compares the percentages of the selected sampling frequencies for
combinations of stocks and months in each year from 1996 to 2017.

Fig. 3 plots the time series of the percentages of the selected sampling frequencies across all stock-month pairs each
year. Around the beginning of our sample in 1996, there are less than 1% of all stock-month pairs using 30-min returns. No
stock-month pairs meet the criteria for higher frequencies. In the following years, there is a remarkable trend indicating
increased reliability of higher sampling frequencies based on our criteria. In 2017, over 20% of stock-months use 5-min
returns, while the use of daily frequency drops to less than 40%.

6.3. A case study of IBM

We then estimate the factor model using high-frequency returns of each stock in each month from 1996 to 2017. We
consider a six-factor model with Fama–French five factors plus the momentum factor.5 The threshold is un = 3∆0.47

n
√
BVt

(see Section 5 for details); the block length is one day (except for the daily frequency assignment case, when it is a month).
We also calculate the corresponding low-frequency benchmarks. In this section, as an example, we analyze the IBM stock
in detail.

Fig. 4 plots the betas of IBM. There are several notable findings. First, the high-frequency betas are remarkably more
stable than their low-frequency counterparts. The latter display much more variation from month to month.6 Second,
there are quite a few large outliers in the low-frequency estimates. For example, momentum beta has a large negative
estimate with a magnitude greater than 10 in April 2003. Close inspection of these outliers shows that in all these
scenarios, IBM has unusually bad earnings announcements that miss analysts’ expectations. In contrast, the high-frequency
beta estimates do not have such outliers because these large returns are identified as jumps, which do not contribute to the
calculation of betas. Third, in the earlier period of the sample, the high-frequency estimates are noisier because of the use
of low sampling frequencies selected by our procedure. Fig. 5 shows a time series of the selected frequencies. A relatively
small number of months at the beginning of the sample use daily frequency, while starting with the decimalization in
2001, the selected frequency for IBM is almost always 5 min.

Fig. 6 compares the total risk of IBM with its idiosyncratic risk, which is further decomposed into a continuous
component and a discontinuous component. The average percentage contribution of the idiosyncratic risk is 47.3%, so the
six-factor model explains roughly half of the total variance of IBM returns. The idiosyncratic jump component accounts
for, on average, 11.6% of the total idiosyncratic risk, although the percentage can reach as high as 75% occasionally. For
example, three recent spikes in the idiosyncratic jump component occur in April 2014, July 2015, and October 2015. We

5 We use high-frequency market return (MKT) directly instead of its excess return (MktRf).
6 High- and low-frequency beta estimators can differ due to finite sample issues, but depending on the model, they can also have different

population counterparts. For example, in our model, under the infill asymptotic scheme, the probability limit, say βLF , of the standard (low-frequency)
beta estimator is

βLF
= ([Xt , Xt ])−1 [Xt , Yt ] =

(∫ t

0
csds +

∑
0≤s≤t

∆X s∆X⊺
s

)−1 (∫ t

0
csβsds +

∑
0≤s≤t

∆X s∆X⊺
s β̃s

)
. (19)

In the special case when βt and β̃t are equal and time-invariant, we obtain βLF
= β , which also equals the integrated beta in (9). If β ̸= β̃ and/or

any of the two betas is time-varying, βLF depends on all the quantities in (19).
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Fig. 4. The six-factor betas of the IBM stock. Note: This figure compares the time series of the high-frequency betas (blue solid line) with the
low-frequency betas (red dashed line) for IBM estimated from the six-factor model for each month from 1996 to 2017. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Time series of the selected sampling frequencies for IBM. Note: This figure plots the monthly time series of the selected sampling frequencies
for IBM from 1996 to 2017.

trace back the exact times of the jumps in high-frequency returns causing the large values of the monthly idiosyncratic
jump measure. It turns out these jumps occur overnight following IBM’s quarterly report release dates, and are therefore
largely caused by IBM’s earnings disappointments.

6.4. The cross section of all stocks

The current section presents the summary across all stocks of the estimation results.
First, we provide cross-sectional quantiles of the beta estimates of all stocks in Figs. 7–12. As expected, the median

estimates are close to one for the market betas and zero for HML, RMW, CMA, and MOM betas. For the size beta, the
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Fig. 6. Decomposition of the IBM’s realized volatility. Note: The top panel compares the total risk of IBM with its total idiosyncratic risk, which
is then further decomposed into the continuous component and the jump component. The total risk and the total idiosyncratic risk are measured
by the annualized quadratic variations of IBM returns (thick black line) and its residual returns (thin red line), respectively. The jump component
of the total idiosyncratic risk is shaded (in blue) at the bottom of the plot. The middle panel plots the fraction of total variation explained by the
systematic component (R2), whereas the bottom panel plots the fraction of the variation of the total idiosyncratic risk composed of idiosyncratic
jumps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Market beta. Note: In this figure, we compare the high-frequency and the low-frequency (i.e., daily frequency) estimates of the MKT beta in
the six-factor model. The solid bold lines correspond to the cross-sectional median; the bands are the cross-sectional 25- and 75-percentiles of the
estimates. ‘‘StdErrs’’ denotes the estimated asymptotic standard errors.

median is somewhat positive. This is because the size factor is value weighted, and the ‘‘median firm’’ is a small firm that
loads positively on the SMB factor (see Fig. 9).

We find that both high- and low-frequency beta estimates demonstrate similar cross-sectional dispersion in the earlier
part of the sample. However, the dispersion of high-frequency estimates is smaller towards the end of the sample. As
the liquidity improves over time, more stocks can use higher frequency data, which improves precision and also helps to
identify and remove jumps. Therefore, the relative advantages of high-frequency betas over the low-frequency alternative
we demonstrate in the special case of IBM seem likely to hold in general. (When making these comparisons, one should
keep in mind that the high- and low-frequency beta estimands only coincide under additional assumptions, see footnote
6.)

In addition, we plot in Fig. 13 the cross-sectional quantiles of the annualized idiosyncratic risk. For the high-frequency
data, we obtain the total idiosyncratic risk as the sum of the idiosyncratic volatility and the idiosyncratic jumps. For
the low-frequency data, we use the variance of the regression residuals as a measure of the idiosyncratic risk, which is
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Fig. 8. HML beta. Note: In this figure, we compare the high-frequency and the low-frequency estimates of the HML beta in the six-factor model.
The solid bold lines correspond to the cross-sectional median; the bands are the cross-sectional 25- and 75-percentiles of the estimates. ‘‘StdErrs’’
denotes the estimated asymptotic standard errors.

Fig. 9. SMB beta. Note: In this figure, we compare the high-frequency and the low-frequency estimates of the SMB beta in the six-factor model.
The solid bold lines correspond to the cross-sectional median; the bands are the cross-sectional 25- and 75-percentiles of the estimates. ‘‘StdErrs’’
denotes the estimated asymptotic standard errors.

the standard estimator of the idiosyncratic risk in the empirical finance literature.7 Fig. 13 suggests that the estimates
are roughly comparable and have similar cross-sectional dispersion. Again, high-frequency estimates are relatively more
accurate in the later sample (see Fig. 10).

Fig. 14 provides further details on the idiosyncratic jump component for the high-frequency data. The figure considers
a smaller cross-section that excludes the stock-months with the daily frequency assignment, when it is difficult to identify
the jumps. The top left plot shows that idiosyncratic jumps account for, on average, 10% of the total idiosyncratic risk,
though the number increases to about 20% for roughly 25% of firms. In the top right panel, we report the same quantiles
for idiosyncratic risks in the CAPM model. Not surprisingly, idiosyncratic jumps account for a slightly larger fraction of the
total risk in the CAPM model since there is only one factor that can potentially jump. In addition, the bottom two plots

7 In our model, when βt and β̃t are equal and time-invariant, under the infill asymptotic scheme, the probability limit of this (annualized)
standard idiosyncratic variance estimator is the same as for the estimators that we calculate on the high-frequency data.
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Fig. 10. CMA beta. Note: In this figure, we compare the high-frequency and the low-frequency estimates of the CMA beta in the six-factor model.
The solid bold lines correspond to the cross-sectional median; the bands are the cross-sectional 25- and 75-percentiles of the estimates. ‘‘StdErrs’’
denotes the estimated asymptotic standard errors.

Fig. 11. RMW beta. Note: In this figure, we compare the high-frequency and the low-frequency estimates of the RMW beta in the six-factor model.
The solid bold lines correspond to the cross-sectional median; the bands are the cross-sectional 25- and 75-percentiles of the estimates. ‘‘StdErrs’’
denotes the estimated asymptotic standard errors.

use a higher threshold un = 4∆0.47
n

√
BVt (the default is 3∆0.47

n
√
BVt ), which produce lower idiosyncratic jumps ratios, as

expected (see Fig. 11).
Fig. 15 plots the cross-sectional quantiles of R2, the fraction of the total risk (quadratic variation) explained by the

systematic component, in the six-factor model and the CAPM. The comparison clearly shows that the additional five
factors are helpful in explaining a larger fraction of the time-series variation in stock returns compared to the CAPM.
When we exclude the stock-month pairs using daily frequencies (the bottom graphs), R2 increases in the earlier part of
the sample, which is otherwise dominated by the daily frequency regressions with somewhat lower R2.

Finally, we explore the relationship between the idiosyncratic jumps and earnings surprises in the cross-section of
stocks. We define an earnings surprise as the percentage difference between realized earnings and analysts’ expectations,
which are available from the I/B/E/S dataset via WRDS. There are a few earnings measures available. We use the most
prominent one, namely, earnings per share (EPS). Because I/B/E/S dataset is quarterly, when merging this database with
our monthly high-frequency estimates, we only keep those months when the announcements are made. There are 248,756
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Fig. 12. MOM beta. Note: In this figure, we compare the high-frequency and the low-frequency estimates of the MOM beta in the six-factor model.
The solid bold lines correspond to the cross-sectional median; the bands are the cross-sectional 25- and 75-percentiles of the estimates. ‘‘StdErrs’’
denotes the estimated asymptotic standard errors.

Fig. 13. Total idiosyncratic risk. Note: In this figure, we compare the high-frequency estimates of the total idiosyncratic risk (including both the
continuous and jump components) with the low-frequency estimates of the idiosyncratic volatility in the six-factor model. The solid bold lines
correspond to the cross-sectional median; the bands are the cross-sectional 25- and 75-percentiles of the estimates. “StdErrs” denotes the estimated
asymptotic standard errors.

matched stock-month pairs. Among these, we only keep the stock-months with a positive idiosyncratic jump estimate.
This leads to a total of 117,557 stock-month pairs which we use in the following regressions.

Because the dataset is rather heterogeneous with potentially many outliers, we regress the logarithm of idiosyncratic
jumps onto the logarithm of the absolute earnings surprises. We consider several specifications of panel regressions with
and without firm and month fixed effects. Table 4 provides the regression results for two different truncation thresholds.
We see from Columns (a)–(d) that earnings surprises increase idiosyncratic jumps, a result that holds across several fixed
effects specifications. Moreover, Columns (e)–(h) further suggest that earnings disappointments have a larger impact than
positive earnings surprises, which appears to agree with the evidence in the case of IBM.
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Fig. 14. Percentages of IdJ. Note: In this figure, we compare the ratios of the idiosyncratic jump component over the total idiosyncratic risk for the
six-factor model and CAPM. The ‘‘low threshold’’ is un = 3∆0.47

n
√
BVt , whereas the ‘‘high threshold’’ is un = 4∆0.47

n
√
BVt . All plots of this figure use

the smaller cross section, which excludes the stock-months for which the daily sampling frequency is selected. The solid blue line corresponds to
the cross-sectional median; the bands are 25- and 75-percentiles of the considered cross section.

Fig. 15. Percentages of R2 . Note: In this figure, we compare the fraction of the variation in total risk explained by the systematic component (R2)
for the six-factor model and CAPM, using high-frequency data. The lower panel is based on a smaller cross section that excludes all stock-months
for which the daily sampling frequency is selected for estimation. The solid blue line corresponds to the cross-sectional median; the bands are 25-
and 75-percentiles of the considered cross section.

7. Conclusion

This paper shows how to identify and estimate, using high-frequency data, a nonparametric Fama–French factor model
under broad assumptions on the data-generating process. We allow for general time-variation in the factor beta processes,
which makes our framework particularly suitable to application to individual stocks. The definitions of the estimators
are straightforward, but important technical difficulties associated with the classification of jumps into systematic and
idiosyncratic components arise when deriving a limit theory.

Our empirical analysis uses a dataset that is larger than any dataset in the high-frequency literature. First, we use
all traded stocks from NYSE, AMEX, and NASDAQ stock exchanges to reconstruct the five Fama–French factors and
the momentum factor for 1996–2017 at the 5-min frequency. The construction requires merging of three databases:
NYSE TAQ, CRSP, and Compustat. We provide the details of the construction and explain how the main practical
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Table 4
Idiosyncratic jumps and earnings surprises.

(a) (b) (c) (d) (e) (f) (g) (h)

Low threshold

Intercept −3.79 −3.89 −3.82 −3.88 −3.57 −3.73 −3.68 −3.80
(−141.95) (−225.89) (−148.81) (−258.24) (−130.06) (−170.14) (−138.44) (−185.88)

log(surprise) 0.14 0.10 0.13 0.11 0.18 0.13 0.15 0.11
(18.57) (17.86) (17.95) (21.09) (21.77) (17.44) (19.29) (16.56)

Positive −0.45 −0.31 −0.27 −0.15
(−15.45) (−12.78) (−10.64) (−6.62)

log(surprise) × positive −0.09 −0.05 −0.05 −0.01
(−10.39) (−7.15) (−6.42) (−2.06)

Firm effect ✓ ✓ ✓ ✓
Month effect ✓ ✓ ✓ ✓

R-Squared (%) 1.42 1.73 1.40 1.84 1.49 1.96 1.48 1.89

No. observations 117, 557 117, 557 117, 557 117, 557 117, 557 117, 557 117, 557 117, 557

High threshold

Intercept −3.84 −3.86 −3.87 −3.87 −3.62 −3.70 −3.74 −3.79
(−132.79) (−188.08) (−140.08) (−198.17) (−115.53) (−139.86) (−123.24) (−147.40)

log(surprise) 0.14 0.13 0.13 0.13 0.17 0.15 0.14 0.12
(17.05) (18.78) (15.88) (19.06) (18.46) (16.81) (15.54) (14.56)

Positive −0.43 −0.30 −0.25 −0.14
(−12.84) (−9.98) (−8.23) (−4.98)

log(surprise) × positive −0.08 −0.04 −0.04 0.00
(−7.81) (−4.19) (−3.90) (0.14)

Firm effect ✓ ✓ ✓ ✓
Month effect ✓ ✓ ✓ ✓

R-squared (%) 1.31 1.61 1.32 1.72 1.32 1.75 1.31 1.69

No. observations 82, 210 82, 210 82, 210 82, 210 82, 210 82, 210 82, 210 82, 210

Note: This table reports 8 panel regression specifications. The dependent variable is always the logarithm of the
idiosyncratic jumps. The covariates include the logarithm of the earnings surprise, defined as the absolute difference
between the realized and expected earnings per share. ‘‘ Positive’’ is a dummy variable that indicates whether the
earnings surprise is positive or negative. We also include firm and month fixed effects in some of these regressions.
t-statistics are provided in parentheses. The ‘‘low threshold’’ is un = 3∆0.47

n
√
BVt , whereas the ‘‘high threshold’’ is

un = 4∆0.47
n

√
BVt .

challenges can be resolved. The resulting number of stocks is 5005 on average. We show how to automatically select
an appropriate sampling frequency for each stock-month to account for the wide variation in liquidity across stocks and
time. We document the key empirical properties across the stocks and the new factors, and apply the nonparametric
factor model with the new high-frequency Fama–French factors. We find that this model is effective in explaining the
systematic component of the risk of individual stocks. Finally, we decompose the idiosyncratic risk into the idiosyncratic
volatility and the idiosyncratic jumps, and find that earnings surprises increase idiosyncratic jumps. Moreover, earnings
disappointments have a larger effect on the idiosyncratic jumps than do the positive earnings surprises.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.01.007.
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Appendix A Proofs

For convenience, let (A)ij denote the (i, j)th element of a matrix A, and Tr(A) denote its trace. In

addition, we define ei to be the d × 1 unit vector with the i-th element equal to 1. Also, we define

δ{statement} as follows:

δ{statement} =

 1, if the statement is true

0, otherwise
.

Throughout, we denote by K a generic constant, which may change from line to line.

Appendix A.1 Proof of Theorem 1

We consider the vector U = (Y,Xᵀ)ᵀ. Note that U is an Itô semimartingale, and its spot covariance

matrix can be written as

us =

 βᵀs csβs + γ2
s βᵀs cs

csβs cs

 .

Naturally, it can be estimated by:

ûi∆n =
1

kn∆n

kn∑
j=1

(∆n
i+jU)ᵀ(∆n

i+jU)1{||∆n
i+jU ||≤un} =

1

kn∆n

 Yᵀ
i Yi Y

ᵀ
i Xi

X ᵀ
i Yi X

ᵀ
i Xi

 :=

 û11
i∆n

û12
i∆n

û21
i∆n

û22
i∆n

 .

For any (d+ 1)-dimensional positive semidefinite matrix u, let

h(u) = (u22)−1u21, and g(u) = u11 − u12(u22)−1u21, (A.1)

where u22, u21, u21, and u11 partition u as follows,

u =

 u11 u12

u21 u22

 ,
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where u11 is of dimension 1 × 1, u12 is 1 × d, u21 is d × 1, and u22 is d × d. With these definitions,

we have

h(us) = βs, and g(us) = βᵀs csβs + γ2
s − βᵀs cs(cs)−1csβs = γ2

s .

As a result, our estimator can be represented as:

Îβt =
kn∆n

t

[t/kn∆n]−1∑
i=0

h(ûikn∆n), and ÎdV
naive

t =
kn∆n

t

[t/kn∆n]−1∑
i=0

g(ûikn∆n).

By the same argument as in the proof of Proposition 1 in Aı̈t-Sahalia and Xiu (2019b), we obtain

kn(ÎdV
naive

− IdV )
p−→ 1

2t

∫ t

0

d+1∑
j,k,l,m=1

∂2
jk,lmg(us)

(
(us)jl(us)km + (us)jm(us)kl

)
ds.

For 1 ≤ j, k, l,m ≤ d+ 1, by taking derivatives in (A.1), we obtain:

∂jkg(us) =δ{j=1,k=1} − δ{j=1,k≥2}e
ᵀ
k−1(u22

s )−1u21
s − u12

s (u22
s )−1δ{j≥2,k=1}ej−1

+ u12
s (u22

s )−1δ{j≥2,k≥2}ej−1e
ᵀ
k−1(u22

s )−1u21
s ,

∂2
jk,lmg(us) = + δ{j=1,k≥2,l≥2,m≥2}e

ᵀ
k−1(u22

s )−1el−1e
ᵀ
m−1(u22

s )−1u21
s

+ δ{j≥2,k≥2,l=1,m≥2}e
ᵀ
m−1(u22

s )−1ej−1e
ᵀ
k−1(u22

s )−1u21
s

− δ{j=1,k≥2,l≥2,m=1}e
ᵀ
k−1(u22

s )−1el−1

− δ{j≥2,k=1,l=1,m≥2}e
ᵀ
m−1(u22

s )−1ej−1

− δ{j≥2,k≥2,l≥2,m≥2}(u
12
s )(u22

s )−1el−1e
ᵀ
m−1(u22

s )−1ej−1e
ᵀ
k−1(u22

s )−1u21
s

− δ{j≥2,k≥2,l≥2,m≥2}(u
12
s )(u22

s )−1ej−1e
ᵀ
k−1(u22

s )−1el−1e
ᵀ
m−1(u22

s )−1u21
s

+ δ{j≥2,k≥2,l≥2,m=1}u
12
s (u22

s )−1ej−1e
ᵀ
k−1(u22

s )−1el−1

+ δ{j≥2,k=1,l≥2,m≥2}u
12
s (u22

s )−1el−1e
ᵀ
m−1(u22

s )−1ej−1.

Plugging it in, and by direct calculations, we have

d+1∑
j,k,l,m=1

∂2
jk,lmg(us)

(
(us)jl(us)km + (us)jm(us)kl

)
= 2d

(
u12
s (u22

s )−1u21
s − u11

s

)
= −2dγ2

s ,
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which concludes the proof.

Appendix A.2 Proof of Theorem 2

The proof needs a similar result to Theorem 2 in Aı̈t-Sahalia and Xiu (2019b) (see also Theorem

3.2 of Jacod and Rosenbaum (2013) under slightly different conditions), which can be established

following similar steps:

∆−1/2
n

kn∆n

[t/kn∆n]−1∑
i=0

(
f(ûikn∆n)− 1

2kn

d+1∑
j,k,l,m=1

∂2
jk,lmf(ûikn∆n)

(
(ûikn∆n)jl(ûikn∆n)km

+(ûikn∆n)jm(ûikn∆n)kl

))
−
∫ t

0
f(us)ds

}
L−s−→ Vt,

where Vt is a conditionally Gaussian process with variance given by

E(VtV
ᵀ
t |F) =

d+1∑
j,k,l,m=1

∫ t

0
∂jkf(us)(∂lmf(us))

ᵀ
(

(us)jl(us)km + (us)jm(us)kl

)
ds,

and where f is any C3 vector-valued function that satisfies certain polynomial growth condition.

Appendix A.2.1 Estimation of IdV

The asymptotic bias has been corrected as in the previous theorem. To calculate the asymptotic

variance, we introduce

∂g(u) := (∂ijg(u))(d+1)×(d+1) =

 1 −u12(u22)−1

−(u22)−1u21 (u22)−1u21u12(u22)−1

 .

Therefore, noting that us = uᵀs and ∂g(us) = (∂g(us))
ᵀ, we obtain

E(V 2
t |F) = 2

∫ t

0

d+1∑
j,m=1

(∂g(us)us)jm(us∂g(us))jmds = 2

∫ t

0
Tr
(
(∂g(us)us)

2
)
ds = 2

∫ t

0
γ4
sds.
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Appendix A.2.2 Estimation of Iβ

We start with the asymptotic bias term, for which we need to calculate the derivative of h defined

in (A.1). For 1 ≤ j, k, l,m ≤ d+ 1, we obtain:

∂jkh(us) =− δ{j≥2,k≥2}(u
22
s )−1ej−1e

ᵀ
k−1(u22

s )−1u21
s + δ{j≥2,k=1}(u

22
s )−1ej−1,

∂2
jk,lmh(us) = + δ{j≥2,k≥2,l≥2,m≥2}(u
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s )−1el−1e

ᵀ
m−1(u22

s )−1ej−1e
ᵀ
k−1(u22

s )−1u21
s

+ δ{j≥2,k≥2,l≥2,m≥2}(u
22
s )−1ej−1e

ᵀ
k−1(u22

s )−1el−1e
ᵀ
m−1(u22

s )−1u21
s

− δ{j≥2,k≥2,l≥2,m=1}(u
22
s )−1ej−1e

ᵀ
k−1(u22

s )−1el−1

− δ{j≥2,k=1,l≥2,m≥2}(u
22
s )−1el−1e

ᵀ
m−1(u22

s )−1ej−1.

In addition, we notice that

d+1∑
j,k,l,m=1

δ{j≥2,k≥2,l≥2,m≥2}(u
22
s )−1el−1e

ᵀ
m−1(u22

s )−1ej−1e
ᵀ
k−1(u22

s )−1u21
s

(
(us)jl(us)km + (us)jm(us)kl

)

=

d∑
j,k,l,m=1

(u22
s )−1ele

ᵀ
m(u22

s )−1eje
ᵀ
k(u

22
s )−1u21

s

(
(u22
s )jl(u

22
s )km + (u22

s )jm(u22
s )kl

)
=(d+ 1)(u22

s )−1u21
s , (A.2)

d+1∑
j,k,l,m=1

δ{j≥2,k≥2,l≥2,m=1}(u
22
s )−1ej−1e

ᵀ
k−1(u22

s )−1el−1

(
(us)jl(us)km + (us)jm(us)kl

)

=
d∑

j,k,l=1

(u22
s )−1eje

ᵀ
k(u

22
s )−1el

(
(u22
s )jl(u

21
s )k + (u21

s )j(u
22
s )kl

)
=(d+ 1)(u22

s )−1u21
s . (A.3)

By switching m and k, j and l, we get the same equalities based on the remaining two terms of

∂2
jk,lmh(us), therefore

d+1∑
j,k,l,m=1

∂2
jk,lmh(us)

(
(us)jl(us)km + (us)jm(us)kl

)
= 0.
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Hence, there is no asymptotic bias for Îβt. As to the asymptotic covariance, we have

E(VtV
ᵀ
t |F)

=
d+1∑

j,k,l,m=1

∫ t

0
∂jkh(us)(∂lmh(us))

>
(

(us)jl(us)km + (us)jm(us)kl

)
ds,

=

d+1∑
j,k,l,m=1

∫ t

0

(
− δ{j≥2,k≥2}(u

22
s )−1ej−1e

>
k−1(u22

s )−1u21
s + δ{j≥2,k=1}(u

22
s )−1ej−1

)
(
− δ{l≥2,m≥2}(u

22
s )−1el−1e

>
m−1(u22

s )−1u21
s + δ{l≥2,m=1}(u

22
s )−1el−1

)>(
(us)jl(us)km + (us)jm(us)kl

)
ds

=

∫ t

0

{
(u12
s )(u22

s )−1(u21
s )(u22

s )−1 + 2(u22
s )−1(u21

s )(u12
s )(u22

s )−1 + (u22
s )−1u11

s − (u12
s )(u22

s )−1(u21
s )(u22

s )−1

− 2(u22
s )−1(u21

s )(u12
s )(u22

s )−1 − (u12
s )(u22

s )−1(u21
s )(u22

s )−1

}
ds

=

∫ t

0
γ2
s c
−1
s ds.

The asymptotic variance estimator can be justified by applying Theorem 9.4.1 from Jacod and

Protter (2012). This concludes the proof.

Appendix A.3 Proof of Theorem 3

Define an auxiliary process Y ′t = Y0 +
∫ t

0 β
ᵀ
s−dX

c
s + Zt. Let Ani = {‖∆n

i X
c‖ ≤ un} and

Ωn
t = ∩i≤[t/∆n]A

n
i . Note that by (2.1.33) and (2.1.34) of Jacod and Protter (2012), for any q ≥ 2,

E‖∆n
i X

c‖q ≤ K∆
q/2
n . By localization and Markov’s inequality, we obtain

[t/∆n]∑
i=1

P (‖∆n
i X

c‖ > un) ≤ u−qn
[t/∆n]∑
i=1

E‖∆n
i X

c‖q ≤ K∆q/2−1−q$
n → 0.

The last step in the above holds because 0 < $ < 1/2 ensures q > 2/(1 − 2$). This implies

P(Ωn
t )→ 1. On the set Ωn

t , we have

[t/∆n]∑
i=1

(∆n
i Y
′)2 · 1{‖∆n

i X
c‖≤un, |∆n

i Y
′|>un} =

[t/∆n]∑
i=1

(∆n
i Y
′)2 · 1{|∆n

i Y
′|>un}.
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Moreover, because {Tq}q=1,2,... is a collection of jump times of Z and because Z and X do not co-

jump, {Tq}q=1,2,... also exhausts the jump times of Y ′ and ∆Y ′Tq = ∆ZTq . By Theorem 13.1.1 of

Jacod and Protter (2012), we have

1√
∆n


[t/∆n]∑
i=1

(∆n
i Y
′)2 · 1{|∆n

i Y
′|>un} −

∑
s≤t

(∆Zs)
2

 L−s−→ t · WJ
t .

Therefore, it remains to show that

1√
∆n

[t/∆n]∑
i=1

{
(∆n

i Y )2 · 1{‖∆n
i X‖≤un, |∆n

i Y |>un} − (∆n
i Y
′)2 · 1{|∆n

i Y
′|>un}

}
= op(1). (A.4)

To prove this, we need to derive a general inequality. Let Fu(x, z) = (x + z)21{‖x+z‖>u, ‖x‖≤u}. We

show below that for u > 1,

‖Fu(x+ y, z)− Fu(x, z)‖ = ‖(x+ y + z)21{‖x+y+z‖>u, ‖x+y‖≤u} − (x+ z)21{‖x+z‖>u, ‖x‖≤u}‖

≤K
(
‖y‖2 ∧ u2 + ‖y‖ ∧ 1

)(
1 + ‖x‖2 + ‖z‖2

)
+Ku−

2
1−2$ ‖x‖2+ 2

1−2$ +Ku−
2

1−2$ ‖z‖2 ‖x‖
2

1−2$

+K ‖x‖2 (‖y + z‖ ∧ 1 + ‖z‖ ∧ 1) +K ‖z‖2 ∧ u2. (A.5)

For convenience, we introduce a decomposition Yt = Y0 + X̃ ′t + X̃ ′′t + Zjt , where

X̃ ′t =

∫ t

0
βᵀs−dX

c
s + Zct , X̃ ′′t =

∑
s≤t

β̃ᵀs−∆Xs,

so that Y ′t = Y0 + X̃ ′t + Zjt . In addition, for any i ≤ n, we have

∆n
i Y = ∆n

i X̃
′ + ∆n

i X̃
′′ + ∆n

i Z
j .

Applying (A.5) to

ηni := Fun/
√

∆n

(
∆n
i X̃
′ + ∆n

i X̃
′′

√
∆n

,
∆n
i Z

j

√
∆n

)
− Fun/√∆n

(
∆n
i X̃
′

√
∆n

,
∆n
i Z

j

√
∆n

)
,
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we obtain

‖ηni ‖ ≤K
(
v2
n(V n

i )2 +Wn
i

) (
1 + (Uni )2 + (Qni )2

)
+Kv

− 2
1−2$

n (Uni )2+ 2
1−2$ +Kv

− 2
1−2$

n (Uni )
2

1−2$ (Qni )2

+K(Uni )2(Hn
i +W

n
i ) +Kv2

n(V
n
i )2,

where vn = un/
√

∆n, which we can assume is greater than 1 for n sufficiently large, and

Uni =

∥∥∥∆n
i X̃
′
∥∥∥

√
∆n

, V n
i =

∥∥∥∆n
i X̃
′′
∥∥∥

∆$
n

∧
1, Wn

i =

∥∥∥∆n
i X̃
′′
∥∥∥

√
∆n

∧
1, Qni =

∥∥∆n
i Z

j
∥∥

√
∆n

,

V
n
i =

∥∥∆n
i Z

j
∥∥

∆$
n

∧
1, W

n
i =

∥∥∆n
i Z

j
∥∥

√
∆n

∧
1, Hn

i =

∥∥∥∆n
i Z

j + ∆n
i X̃
′′
∥∥∥

√
∆n

∧
1.

By (2.1.33), (2.1.34), (2.1.44), and (2.1.47) in Jacod and Protter (2012), for q > 0, there exists a

sequence φn → 0 such that

E
(
(Uni )q|F(i−1)∆n

)
≤ K,

E
(
(V n
i )q|F(i−1)∆n

)
≤ ∆

(1−r$)(1∧ q
r

)
n φn, E

(
(V

n
i )q|F(i−1)∆n

)
≤ ∆

(1−r$)(1∧ q
r

)
n φn,

E
(
(Wn

i )q|F(i−1)∆n

)
≤ ∆

(1− r
2

)(1∧ q
r

)
n φn, E

(
(W

n
i )q|F(i−1)∆n

)
≤ ∆

(1− r
2

)(1∧ q
r

)
n φn,

E
(
(Hn

i )q|F(i−1)∆n

)
≤ ∆

(1− r
2

)(1∧ q
r

)
n φn, E

(
(Qni )2|F(i−1)∆n

)
≤ K.

These estimates, along with 1/(4 − 2r) ≤ $ < 1/2, imply that E ‖ηni ‖ ≤ K
√

∆nφn, which in turn

implies that the left-hand side of (A.4) satisfies

√
∆n

[t/∆n]∑
i=1

ηni
u.c.p.
=⇒ 0,

which concludes the proof of the asymptotic distribution. The consistency of the asymptotic variance

estimator follows from a similar extension of Theorem 9.5.1 of Jacod and Protter (2012).

Appendix A.3.1 Proof of Equation (A.5)

There are several cases we need to distinguish:

1. ‖x+ y + z‖ > u, ‖x+ z‖ > u. There are four scenarios to consider.
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a. ‖x+ y‖ ≤ u, ‖x‖ ≤ u. Note that 1{‖x+y‖≤u,‖x‖≤u} ≤ 1{‖y‖≤2u} and

(‖y‖2 + ‖y‖)1{‖y‖≤2u} ≤ K
(
u21{u≤‖y‖≤2u} + ‖y‖2 1{1≤‖y‖<u} + ‖y‖ 1{‖y‖<1}

)
.

Therefore, the left-hand side of (A.5) satisfies:

‖(x+ y + z)2 − (x+ z)2‖ ≤‖y‖2 + 2 ‖y‖ (‖x‖+ ‖z‖) ≤ K(‖y‖2 + ‖y‖)(1 + ‖x‖+ ‖z‖)

≤K(‖y‖2 ∧ u2 + ‖y‖ ∧ 1)
(

1 + ‖z‖2 + ‖x‖2
)
.

b. ‖x+ y‖ ≤ u, ‖x‖ > u. The left-hand side is

‖x+ y + z‖2 ≤K ‖x+ y‖2 +K ‖z‖2 ≤ K(u2 + ‖z‖2)1{‖x‖>u}

≤Ku−
2

1−2$ ‖x‖2+ 2
1−2$ +Ku−

2
1−2$ ‖z‖2 ‖x‖

2
1−2$ .

c. ‖x+ y‖ > u, u/2 < ‖x‖ ≤ u. Similarly, the left-hand side is

‖x+ z‖2 ≤ K(u2 + ‖z‖2)1{‖x‖>u} ≤ Ku−
2

1−2$ ‖x‖2+ 2
1−2$ +Ku−

2
1−2$ ‖z‖2 ‖x‖

2
1−2$ .

d. ‖x+ y‖ > u, ‖x‖ < u/2. This implies ‖y‖ ≥ u/2. The left-hand side is

‖x+ z‖2 ≤ K(‖x‖2 + ‖z‖2)1{‖y‖≥u/2} ≤ K(‖x‖2 + ‖z‖2) (‖y‖ ∧ 1) .

2. ‖x+ y + z‖ > u, ‖x+ z‖ ≤ u. In this case, only when ‖x+ y‖ ≤ u, the left-hand side is

non-zero. We study two scenarios.

a. ‖x‖ > u. The left-hand side is

‖x+ y + z‖2 ≤K ‖x+ y‖2 +K ‖z‖2 ≤ K(u2 + ‖z‖2)1{‖x‖>u}

≤Ku−
2

1−2$ ‖x‖2+ 2
1−2$ +Ku−

2
1−2$ ‖z‖2 ‖x‖

2
1−2$ .
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b. ‖x‖ ≤ u. This leads to ‖y‖ ≤ 2u and ‖z‖ ≤ 2u. Hence, the left-hand side satisfies:

‖x+ y + z‖2 ≤K ‖x‖2 1{‖x‖≤u} +K ‖z‖2 1{‖z‖≤2u} +K ‖y‖2 1{‖y‖≤2u}

≤K ‖x‖2 1{‖x‖>u/2} +K ‖x‖2 1{‖y+z‖≥u/2} +K ‖z‖2 ∧ u2 +K ‖y‖2 ∧ u2

≤Ku−
2

1−2$ ‖x‖2+ 2
1−2$ +K ‖x‖2 (‖y + z‖ ∧ 1) +K ‖z‖2 ∧ u2 +K ‖y‖2 ∧ u2.

3. ‖x+ y + z‖ ≤ u, ‖x+ z‖ > u. In this case, the left-hand side is non-zero if ‖x‖ ≤ u. Similarly,

we consider two scenarios.

a. ‖x+ y‖ > u. The left-hand side becomes

‖x+ z‖2 ≤K(‖x‖2 + ‖z‖2)1{‖x‖≥u/2} +K(‖x‖2 + ‖z‖2)1{‖y‖≥u/2}

≤Ku
(
− 2

1−2$ ‖x‖2+ 2
1−2$ + ‖z‖2 ‖x‖

)
.

b. ‖x+ y‖ ≤ u. This leads to ‖z‖ ≤ 2u. The left-hand side becomes

‖x+ z‖2 ≤K ‖x‖2 1{‖x‖>u/2} +K ‖x‖2 1{‖z‖>u/2} +K ‖z‖2 1{‖z‖≤2u}

≤Ku−
2

1−2$ ‖x‖2+ 2
1−2$ +K ‖x‖2 (‖z‖ ∧ 1) +K ‖z‖2 ∧ u2.

This concludes the proof.
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Appendix B Tables and Figures

Factor Dynamics Beta Dynamics Idiosyncratic Dynamics

b (0.05, 0.03, 0.02) κ (2, 2, 2) γ 0.35
σ2

0 (0.12, 0.09, 0.04) α (0.15, 0.10,−0.10) h 0
κ̃ (3, 4, 5) υ (0.03, 0.03, 0.03) g+

i σi0×7
√

∆n

g̃ (0.004, 0.005, 0.004) g−i σi0×7
√

∆n

g+ γ × 14
√

∆n q 0.5
g− γ × 14

√
∆n

λ 67
α̃ (0.09, 0.04, 0.06)
υ̃ (0.3, 0.4, 0.3)
q (0.5, 0.5, 0.5)

(ρ12, ρ13, ρ23) (0.05, 0.10, 0.15)

Table 1: Monte Carlo Simulations: Parameter Values

Note: This table reports the parameter values used in the data generating process of our Monte Carlo simu-
lations.
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5 min sampling frequency

kn= 78 kn= 91 kn= 117
bias stdev RMSE bias stdev RMSE bias stdev RMSE

Îβ
(1)

t -0.15 2.64 2.65 -0.16 2.64 2.65 -0.15 2.65 2.65

Îβ
(2)

t -0.05 3.13 3.13 -0.05 3.13 3.13 -0.05 3.11 3.11

Îβ
(3)

t 0.26 4.18 4.19 0.31 4.16 4.17 0.24 4.14 4.14

ÎdV t 0.06 0.46 0.47 0.07 0.46 0.47 0.08 0.46 0.47

ÎdJ t -0.06 0.78 0.78 -0.06 0.78 0.78 -0.06 0.78 0.78

10 min sampling frequency

kn= 39 kn= 63 kn= 91
bias stdev RMSE bias stdev RMSE bias stdev RMSE

Îβ
(1)

t -0.10 3.83 3.83 -0.14 3.75 3.75 -0.14 3.67 3.67

Îβ
(2)

t 0.06 4.67 4.67 0.02 4.47 4.47 0.03 4.49 4.49

Îβ
(3)

t -0.17 6.46 6.46 -0.20 6.23 6.23 -0.18 6.25 6.26

ÎdV t 0.03 0.67 0.67 0.07 0.66 0.66 0.09 0.65 0.66

ÎdJ t 0.00 0.98 0.98 0.00 0.98 0.98 0.00 0.98 0.98

30 min sampling frequency

kn= 13 kn= 21 kn= 39
bias stdev RMSE bias stdev RMSE bias stdev RMSE

Îβ
(1)

t -0.17 7.56 7.56 0.01 6.97 6.97 0.04 6.47 6.47

Îβ
(2)

t 0.07 9.67 9.68 0.34 8.91 8.92 0.25 8.37 8.38

Îβ
(3)

t 0.18 13.02 13.02 -0.04 12.21 12.21 0.07 11.39 11.39

ÎdV t -0.60 1.22 1.36 -0.17 1.20 1.21 0.02 1.20 1.20

ÎdJ t -0.03 1.88 1.88 -0.03 1.88 1.88 -0.03 1.88 1.88

Table 2: Simulation Results

Note: Columns “bias”, “stdev”, and “RMSE” contain the sample bias, the sample standard deviation, and the

sample root mean squared error across simulations of the centered estimator, e.g., of the quantity ÎdV t−IdVt.
All these quantities are multiplied by 100. kn is the number of observations in a subsample. un = 3∆0.47

n

√
BVt.
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5 min sampling frequency

kn= 78 kn= 91 kn= 117
bias stdev RMSE bias stdev RMSE bias stdev RMSE

Îβ
(1)

t -0.14 2.63 2.64 -0.16 2.63 2.64 -0.15 2.64 2.64

Îβ
(2)

t -0.03 3.15 3.15 -0.04 3.16 3.16 -0.02 3.13 3.13

Îβ
(3)

t 0.26 4.13 4.14 0.31 4.13 4.14 0.25 4.10 4.10

ÎdV t 0.20 0.50 0.54 0.20 0.50 0.54 0.21 0.50 0.54

ÎdJ t -0.13 0.77 0.78 -0.13 0.77 0.78 -0.13 0.77 0.78

10 min sampling frequency

kn= 39 kn= 63 kn= 91
bias stdev RMSE bias stdev RMSE bias stdev RMSE

Îβ
(1)

t -0.06 3.89 3.89 -0.08 3.82 3.82 -0.08 3.72 3.72

Îβ
(2)

t 0.06 4.62 4.62 0.01 4.44 4.44 0.02 4.47 4.47

Îβ
(3)

t -0.21 6.51 6.51 -0.23 6.31 6.31 -0.23 6.31 6.31

ÎdV t 0.17 0.74 0.76 0.22 0.73 0.76 0.24 0.73 0.77

ÎdJ t -0.18 1.02 1.03 -0.18 1.02 1.03 -0.18 1.02 1.03

30 min sampling frequency

kn= 13 kn= 21 kn= 39
bias stdev RMSE bias stdev RMSE bias stdev RMSE

Îβ
(1)

t -0.13 7.59 7.59 0.06 6.97 6.97 0.07 6.46 6.46

Îβ
(2)

t 0.03 9.89 9.89 0.30 8.90 8.90 0.16 8.32 8.33

Îβ
(3)

t 0.15 12.84 12.84 -0.08 12.05 12.05 0.01 11.25 11.25

ÎdV t -0.24 1.74 1.75 0.20 1.75 1.76 0.40 1.76 1.80

ÎdJ t -0.41 2.27 2.30 -0.41 2.27 2.30 -0.41 2.27 2.30

Table 3: Simulation Results

Note: Columns “bias”, “stdev”, and “RMSE” contain the sample bias, the sample standard deviation, and the

sample root mean squared error across simulations of the centered estimator, e.g., of the quantity ÎdV t−IdVt.
All these quantities are multiplied by 100. kn is the number of observations in a subsample. un = 4∆0.47

n

√
BVt.
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(a) (b) (c) (d) (e) (f) (g) (h)

Low Threshold

Intercept -3.79 -3.89 -3.82 -3.88 -3.57 -3.73 -3.68 -3.80

(-141.95) (-225.89) (-148.81) (-258.24) (-130.06) (-170.14) (-138.44) (-185.88)

log(Surprise) 0.14 0.10 0.13 0.11 0.18 0.13 0.15 0.11

(18.57) (17.86) (17.95) (21.09) (21.77) (17.44) (19.29) (16.56)

Positive -0.45 -0.31 -0.27 -0.15

(-15.45) (-12.78) (-10.64) (-6.62)

log(Surprise) × Positive -0.09 -0.05 -0.05 -0.01

(-10.39) (-7.15) (-6.42) (-2.06)

Firm Effect X X X X

Month Effect X X X X

R-Squared (%) 1.42 1.73 1.40 1.84 1.49 1.96 1.48 1.89

No. Observations 117,557 117,557 117,557 117,557 117,557 117,557 117,557 117,557

High Threshold

Intercept -3.84 -3.86 -3.87 -3.87 -3.62 -3.70 -3.74 -3.79

(-132.79) (-188.08) (-140.08) (-198.17) (-115.53) (-139.86) (-123.24) (-147.40)

log(Surprise) 0.14 0.13 0.13 0.13 0.17 0.15 0.14 0.12

(17.05) (18.78) (15.88) (19.06) (18.46) (16.81) (15.54) (14.56)

Positive -0.43 -0.30 -0.25 -0.14

(-12.84) (-9.98) (-8.23) (-4.98)

log(Surprise) × Positive -0.08 -0.04 -0.04 0.00

(-7.81) (-4.19) (-3.90) (0.14)

Firm Effect X X X X

Month Effect X X X X

R-Squared (%) 1.31 1.61 1.32 1.72 1.32 1.75 1.31 1.69

No. Observations 82,210 82,210 82,210 82,210 82,210 82,210 82,210 82,210

Table 4: Idiosyncratic Jumps and Earnings Surprises

Note: This table reports 8 panel regression specifications. The dependent variable is always the logarithm of
the idiosyncratic jumps. The covariates include the logarithm of the earnings surprise, defined as the absolute
difference between the realized and expected earnings per share. “Positive” is a dummy variable that indicates
whether the earnings surprise is positive or negative. We also include firm and month fixed effects in some of
these regressions. t-statistics are provided in parentheses. The “low threshold” is un = 3∆0.47

n

√
BVt, whereas

the “high threshold” is un = 4∆0.47
n

√
BVt.
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Figure 1: Simulation Results: Standardized Estimates

Note: We plot the finite sample distributions of the standardized statistics (gray histograms), and we super-

impose the standard normal law (black solid line). The finite sample distribution of the ÎdV
naive

t estimator
appears in red dashed lines. The sampling frequency is every 5 minutes and the subsamples are one day long,
i.e., kn = 78.
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Figure 2: Factors

Note: This figure compares the daily aggregated cumulative returns of the high-frequency factors, in blue solid
lines (AKX), with those of the low-frequency factors, in red dashed lines (FF), downloaded from Kenneth
French’s website. The sampling period is January 1996 - December 2017.
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Figure 3: Percentage of the Selected Sampling Frequencies

Note: This figure compares the percentages of the selected sampling frequencies for combinations of stocks
and months in each year from 1996 to 2017.
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Figure 4: Time Series of the Selected Sampling Frequencies for IBM

Note: This figure plots the monthly time series of the selected sampling frequencies for IBM from 1996 to
2017.
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Figure 5: The Six-Factor Betas of the IBM Stock

Note: This figure compares the time series of the high-frequency betas (blue solid line) with the low-frequency
betas (red dashed line) for IBM estimated from the six-factor model for each month from 1996 to 2017.
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Figure 6: Decomposition of the IBM’s Realized Volatility

Note: The top panel compares the total risk of IBM with its total idiosyncratic risk, which is then further
decomposed into the continuous component and the jump component. The total risk and the total idiosyncratic
risk are measured by the annualized quadratic variations of IBM returns (thick black line) and its residual
returns (thin red line), respectively. The jump component of the total idiosyncratic risk is shaded (in blue) at
the bottom of the plot. The middle panel plots the fraction of total variation explained by the systematic
component (R2), whereas the bottom panel plots the fraction of the variation of the total idiosyncratic risk
composed of idiosyncratic jumps.
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Figure 7: Market Beta

Note: In this figure, we compare the high-frequency and the low-frequency (i.e., daily frequency) estimates of
the MKT beta in the six-factor model. The solid bold lines correspond to the cross-sectional median; the bands
are the cross-sectional 25- and 75-percentiles of the estimates. “StdErrs” denotes the estimated asymptotic
standard errors.
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Figure 8: HML Beta

Note: In this figure, we compare the high-frequency and the low-frequency estimates of the HML beta in
the six-factor model. The solid bold lines correspond to the cross-sectional median; the bands are the cross-
sectional 25- and 75-percentiles of the estimates. “StdErrs” denotes the estimated asymptotic standard errors.
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Figure 9: SMB Beta

Note: In this figure, we compare the high-frequency and the low-frequency estimates of the SMB beta in
the six-factor model. The solid bold lines correspond to the cross-sectional median; the bands are the cross-
sectional 25- and 75-percentiles of the estimates. “StdErrs” denotes the estimated asymptotic standard errors.
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Figure 10: CMA Beta

Note: In this figure, we compare the high-frequency and the low-frequency estimates of the CMA beta in
the six-factor model. The solid bold lines correspond to the cross-sectional median; the bands are the cross-
sectional 25- and 75-percentiles of the estimates. “StdErrs” denotes the estimated asymptotic standard errors.
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Figure 11: RMW Beta

Note: In this figure, we compare the high-frequency and the low-frequency estimates of the RMW beta in
the six-factor model. The solid bold lines correspond to the cross-sectional median; the bands are the cross-
sectional 25- and 75-percentiles of the estimates. “StdErrs” denotes the estimated asymptotic standard errors.
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Figure 12: MOM Beta

Note: In this figure, we compare the high-frequency and the low-frequency estimates of the MOM beta in
the six-factor model. The solid bold lines correspond to the cross-sectional median; the bands are the cross-
sectional 25- and 75-percentiles of the estimates. “StdErrs” denotes the estimated asymptotic standard errors.
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Figure 13: Total Idiosyncratic Risk

Note: In this figure, we compare the high-frequency estimates of the total idiosyncratic risk (including both the
continuous and jump components) with the low-frequency estimates of the idiosyncratic volatility in the six-
factor model. The solid bold lines correspond to the cross-sectional median; the bands are the cross-sectional
25- and 75-percentiles of the estimates. “StdErrs” denotes the estimated asymptotic standard errors.
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Figure 14: Percentages of IdJ

Note: In this figure, we compare the ratios of the idiosyncratic jump component over the total idiosyncratic risk
for the six-factor model and CAPM. The “low threshold” is un = 3∆0.47

n

√
BVt, whereas the “high threshold”

is un = 4∆0.47
n

√
BVt. All plots of this figure use the smaller cross section, which excludes the stock-months for

which the daily sampling frequency is selected. The solid blue line corresponds to the cross-sectional median;
the bands are 25- and 75-percentiles of the considered cross section.
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Figure 15: Percentages of R2

Note: In this figure, we compare the fraction of the variation in total risk explained by the systematic
component (R2) for the six-factor model and CAPM, using high-frequency data. The lower panel is based on
a smaller cross section that excludes all stock-months for which the daily sampling frequency is selected for
estimation. The solid blue line corresponds to the cross-sectional median; the bands are 25- and 75-percentiles
of the considered cross section.
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